М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kristinakissa1
kristinakissa1
03.02.2022 02:08 •  Алгебра

У меня сор по алгебре нужна


У меня сор по алгебре нужна ​

👇
Открыть все ответы
Ответ:
DenisBru4anovvv
DenisBru4anovvv
03.02.2022
1) 5^(x-2) = 1                            5)2^(x²-3x+8) = 64
5^(x-2) = 5^0                                2^(x² -3x +8) = 2^6
x-2 = 0                                         x² -3x +8 = 6
x = 2                                             x² -3x +2 = 0
2) 3·4^x =48                               x = 1   и   х = 2
4^x = 16                                     6)7^(2x-8)·7^(x+7) = 0
4^x = 4²                                        нет решений
x=2                                             7)(0,2)^x ≤ 25·5√5
3)3^x=27·3√9                                  5^-x ≤ 5²·5·5^1/2  
3^x = 3³·3·3                                     5^-x ≤5^3,5 
3^x = 3^5                                          -x ≤ 3,5
x = 5                                                   x ≥ -3,5
4)3^x + 3^(x +1) = 4                    8)(1/2)^-x + 2^(3 +x) ≤9
3^x(1 +3) = 4                                2^x +2^(3 +x) ≤ 9 
3^x·4 = 4                                      2^x(1 +2^3) ≤ 9 | :9  
3^x = 1                                          2^x ≤ 1
x = 0                                              2^x ≤2^0
                                                       x≤ 0 
4,8(70 оценок)
Ответ:
Безликая009
Безликая009
03.02.2022

ответ:Данный урок мы посвятим решению типовых задач на построение графика функции . Вспомним определение квадратного корня.

Определение. Квадратным корнем из неотрицательного числа  называется такое неотрицательное число , квадрат которого равен .

.

Изобразим график  – это правая ветвь параболы (рис. 1).

Рис. 1.

На графике наглядно виден смысл вычисления квадратного корня. Например, если рассмотреть ординату 16, то ей будет соответствовать абсцисса 4, т. к. . Аналогично, ординате 9 на графике соответствует точка с абсциссой 3, поскольку , ординате 11 соответствует абсцисса , т. к.  (квадратный корень из 11 не извлекается в целых числах).

Теперь вспомним график функции  (рис. 2).

Рис. 2.

На графике для наглядности изображены несколько точек, ординаты которых вычисляются с извлечения квадратного корня: , , .

Примеры на преобразование графиков с корнями

Пример 1. Постройте и прочтите график функции: а) , б) .

Решение. а) Построение начинается с простейшего вида функции, т. е. в данном случае с графика  (пунктиром). Затем для построения искомого графика график функции  необходимо сдвинуть влево на 1 (рис. 3). При этом все точки графика сдвинутся на 1 влево, например, точка с координатами (1;1) перейдет в точку с координатами (0;1). В результате получаем искомый график (красная кривая). Проверить такой легко при подстановке нескольких значений аргумента.

Рис. 3.

Прочтем график: если аргумент меняется от  до , функция возрастает от 0 до . Область определения (ОДЗ) при этом требует, чтобы подкоренное выражение было неотрицательным, т. е. .

б)  Для построения графика функции  поступим аналогичным образом. Сначала строим график  (пунктиром). Затем для построения искомого графика график функции  необходимо сдвинуть вправо на 1 (рис. 4). При этом все точки графика сдвинутся на 1 вправо, например, точка с координатами (1;1) прейдет в точку с координатами (2;1). В результате получаем искомый график (красная кривая).

Рис. 4.

Прочтем график: если аргумент меняется от  до , функция возрастает от 0 до . Область определения (ОДЗ) аналогична предыдущему случаю: .

Замечание. На указанных примерах несложно сформулировать правило построения функций вида:

.

Пример 2. Постройте и прочтите график функции: а) , б) .

Решение. а) Этот пример также демонстрирует преобразование графиков функций, но только уже другого типа. Начинаем построение с простейшей функции  (пунктиром). Затем график построенной функции смещаем на 2 вверх и получаем на рисунке 5 искомый график (красная кривая). Точка с координатами (1;1) при этом, например, переходит в точку (1;3).

Рис. 5.

Прочтем график: если аргумент меняется от 0 до , функция возрастает от 2 до . Область определения (ОДЗ): .

б) Также начинаем построение с простейшей функции  (пунктиром). Затем график построенной функции (рис. 6) смещаем на 1 вниз и получаем искомый график (красная кривая). Точка с координатами (1;1) при этом, например, переходит в точку (1;0).

 

4,5(99 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ