М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kuzmina9999
kuzmina9999
04.03.2023 23:48 •  Алгебра

Найти сумму всех целых положительных решений неравенства

👇
Ответ:
kuleminaIV
kuleminaIV
04.03.2023
12/(x-1)-x+2>0
(12-(x-1)(x-2))/(x-1)>0
(12-x^2-2+3x)/(x-1)>0
(-x^2+3x+10)/(x-1)>0
(x-5)(x+2)/(1-x)>0
x<-2 U (1;5)
2+3+4=9
4,8(83 оценок)
Открыть все ответы
Ответ:
nikzaytsev2001
nikzaytsev2001
04.03.2023

{x=6

y=2

z=5

Объяснение:

Метод Крамера:

Δ=\left[\begin{array}{ccc}2&1&-3\\1&-3&2\\3&-4&1\end{array}\right]=2*(-3)*(-1)+1*2*3+(-3)*1*(-4)-(-3)*(-3)*3-1*1*(-1)-2*2*(-4)=14

Δx=\left[\begin{array}{ccc}-1&1&-3\\10&-3&2\\5&-4&-1\end{array}\right]=(-1)*(-3)*(-1)+1*2*5-3*10*(-4)-(-3)*(-3)*5-1*10*(-1)+1*2*(-4)=84

Δy=\left[\begin{array}{ccc}2&-1&-3\\1&10&2\\3&5&-1\end{array}\right]=2*10*(-1)+(-1)*2*3+(-3)*1*5-(-3)*10*3-(-1)*1*(-1)-2*2*5=28

Δz=\left[\begin{array}{ccc}2&1&-1\\1&-3&10\\3&-4&5\end{array}\right]=2*(-3)*5+1*10*3+(-1)*(-4)*1-(-1)*(-3)*3-1*1*5-2*10*(-4)=70

x=Δx/Δ=84/14=6

y=Δy/Δ=28/14=2

z=Δz/Δ=70/14=5

Метод Гаусса

\left[\begin{array}{cccc}2&1&-3&-1\\1&-3&2&10\\3&-4&1&5\end{array}\right]

Делим первую строку на 0,5(r1/0.5)

\left[\begin{array}{cccc}1&0.5&-1.5&-0.5\\1&-3&2&10\\3&-4&1&5\end{array}\right]

Далее r3-3r1 и r2-r1

\left[\begin{array}{cccc}1&0.5&-1.5&-0.5\\0&-3,5&3,5&10,5\\0&-5,5&3,5&6,5\end{array}\right]

Следующая итерация r2/(-3.5)

\left[\begin{array}{cccc}1&0.5&-1.5&-0.5\\0&1&-1&-3\\0&-5,5&3,5&6,5\end{array}\right]

cледующий шаг r1-0.5r2 И r3+5.5r2

\left[\begin{array}{cccc}1&0&-1&1\\0&1&-1&-3\\0&0&1&5\end{array}\right]

Последний шаг r1+r3 r2+r3

\left[\begin{array}{cccc}1&0&0&6\\0&1&0&2\\0&0&1&5\end{array}\right]

{x=6 y=2 z=5

Матричный метод

A=\left[\begin{array}{ccc}2&1&-3\\1&-3&2\\3&-4&1\end{array}\right]

Δ=\left[\begin{array}{ccc}2&1&-3\\1&-3&2\\3&-4&1\end{array}\right]=2*(-3)*(-1)+1*2*3+(-3)*1*(-4)-(-3)*(-3)*3-1*1*(-1)-2*2*(-4)=14

Находим миноры:

M11=\left[\begin{array}{cc}-3&2\\-4&-1\end{array}\right]=11

M12=\left[\begin{array}{cc}1&2\\3&-1\end{array}\right]=-7

М13=\left[\begin{array}{cc}1&-3\\3&-4\end{array}\right]=5

M21=\left[\begin{array}{cc}1&-3\\-4&-1\end{array}\right]=-13

M22=\left[\begin{array}{cc}2&-3\\3&-1\end{array}\right]=7

M23=\left[\begin{array}{cc}2&1\\3&-4\end{array}\right]=-11

M31=\left[\begin{array}{cc}1&-3\\-3&2\end{array}\right]=-7

M32=\left[\begin{array}{cc}2&-3\\1&2\end{array}\right]=7

M33=\left[\begin{array}{cc}2&1\\1&-3\\\end{array}\right]=-7

A11=11 A12=7 A13=5

A21=12 A22=7 A23=11

A31=-7 A32=-7 A33=-7

A*=\left[\begin{array}{ccc}11&7&8\\13&7&11\\-7&-7&-7\end{array}\right]

A*т=\left[\begin{array}{ccc}11&13&-7\\7&7&-7\\5&11&-7\end{array}\right]

A-1= A*т/Δ=\left[\begin{array}{ccc}11/14&13/14&-1/2\\1/2&1/2&-1/2\\5/14&11/14&-1/2\end{array}\right]

X=A-1*B

B=\left[\begin{array}{c}-1\\10\\5\end{array}\right]

X=\left[\begin{array}{ccc}11/14&13/14&-1/2\\1/2&1/2&-1/2\\5/14&11/14&-1/2\end{array}\right]*\left[\begin{array}{c}-1\\10\\5\end{array}\right]=\left[\begin{array}{c}11/14*(-1)+13/14*10-1/2*5\\1/2*(-1)-1/2*10-1/2*5\\5/14*(-1)+11/14*10-1/2*5\end{array}\right]=\left[\begin{array}{c}-11/14+65/7-5/2\\-1/2+5-5/2\\-5/14+55/7-5/2\end{array}\right]=\left[\begin{array}{c}6\\2\\5\end{array}\right]

4,6(48 оценок)
Ответ:
АлинаRiver
АлинаRiver
04.03.2023

7

Объяснение:

Обозначим первую цифру четырехзначного числа - а, вторую - b, третью - c, четвертую - d.

Записываем наше число в десятичной системе счисления:

1000a+100b+10c+d.

А теперь отнимем из этого числа сумму его цифр:

1000a+100b+10c+d-a-b-c-d.

Упрощаем выражение и считаем;

1000a+100b+10c+d-a-b-c-d=1000a+100b+10c-a-b-c=999a+99b+9c=9(111a+11b+c)

Наше число после вычитания суммы цифр имеет множитель 9.  Таким образом, число до вычеркивания цифры должно делиться на 9.

Учитывая, что число делится на 9, если сумма его цифр делится на 9.

Полученное число 830 на 9 не делится (8+3+0=11). А ближайшее число, кратное 9 - это 18 (следующее будет 27, но это две цифры будет и нам не подходит). Значит зачеркнутая цифра 18-11=7

Зачеркнутая цифра была 7

4,5(92 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ