x⁴ - 3x² - 4 = 0
x² = t
t² - 3t - 4 = 0
d = 9 + 16 = 25
x² = -1
нет корней
x² = 4
x₁ = 4
x₂ = -4
ответ: x = 4; -4
1 б(x² - 1)(x² + 4x + 3) = 0
x² + 4x + 3 = 0
d = 16 - 12 = 4
ответ: x = 1; -1; -3
2воспользуемся свойством пропорции:
x² - 4 = 0
x² = 4
x = ±4
ответ: x = 4; -4
2 бвоспользуемся свойством пропорции:
x² - 3x - 10 = 0
d = 9 + 40 = 49
ответ: x = -2; 5
2 вответ: x = 1; -4
3(x² + 2x)² + 13(x² + 2x) + 12 = 0
x² + 2x = t
t² + 13t + 12 = 0
d = 169 - 48 = 121
x² + 2x = -12
x² + 2x + 12 = 0
d = 4 - 48 = -44
нет корней
x² + 2x = -1
x² + 2x + 1 = 0
d = 4 - 4 = 0
ответ: x = -1
прости, с 4-ым не смогу .
Пусть x ч-время работы первой трубы, y ч-время работы второй трубы. Тогда 1/x - производительность первой трубы, 1/y - производительность второй трубы. Составим первое уравнение системы: 1/x+1/y=1/14.
1,5/x - новая производительность первой трубы. Составим второе уравнение системы:
1,5X+1/y=1/12/
Составим систему уравнений:
1/x+1/y=1/14
1,5/x+1/y=1/12
Решим алгебраического сложения. Вычтем из первого уравнения второе. Получим:
-0,5/x+0=1/14-1/12
-0,5/x=6/84-7/84
-0,5x=-1/84
x=0,5*84
x=42
Значит, время работы первой трубы - 42 часа. Тогда подставим вместо х 42 в первое уравнение системы, получим: 1/42+1/y=1/14, 1/y=1/14-1/42, 1/y=3/42-1/42, 1/y=2/42, 1/y=1/21, y=21. Значит, работая отдельно, вторая труба наполнит бассейн за 21 час.
ответ: 21 час.
Объяснение:
6+√6=(√6)²+√6=√6(√6+1)