а) Первые 4 члена последовательности.
y(1) = (3*1+10)/(3-4*1) = (3+10)/(3-4) = 13/(-1) = -13
y(2) = (3*2+10)/(3-4*2) = (6+10)/(3-8) = 16/(-5) = -3,2
y(3) = (3*3+10)/(3-4*3) = (9+10)/(3-12) = -19/9
y(4) = (3*4+10)/(3-4*4) = (12+10)/(3-16) = -22/13
б) Чтобы найти, начиная с какого числа все члены последовательности будут больше -1, нужно составить неравенство.
(3n + 10)/(3 - 4n) > -1
(3n + 10)/(3 - 4n) + 1 > 0
(3n + 10 + 3 - 4n)/(3 - 4n) > 0
(13 - n)/(3 - 4n) > 0
Поменяем знаки в числителе и в знаменателе одновременно, дробь от этого не изменится.
(n - 13)/(4n - 3) > 0
По методу интервалов
n ∈ (-oo; 3/4) U (13; +oo)
Так как 13 не входит в промежуток, то
ОТВЕТ: Начиная с n = 14
ответ: 64 пи
объяснение:
) тк в осевом сечении конуса у нас лежит равнобедренный треугольник и угол при вершине 90 градусов то значит что это прямоугольный треугольник с двумя равными катетами (образующими) по 4 дм значит гипотенуза , которая равна двум радиусам , будет равна по теореме пифагора 4 корень из 2; а равна она двум радиусам потому что высота проведённая из вершины прямого угла треугольника на основание конуса равна медиане и попадает она в центр окружности основания, получается что радиус равен 2 корень из 2;
2) площадь боковой равна пи*радиус*образующую=пи*2 корень из 2*4=8 корень из двух *пи;
3) объём равен площади основания на высоту;
площадь основания пи*радиус в квадрате а высота из осевого сечения по теореме пифагора можно найти: корень из( 16 - 8)= корень из 8 = два корень из двух ;
объём равен пи*8*8=64*пи
извини что без рисунка возможно здесь даже есть ошибки я так представил
Получаем уравнение:
Получаем что сторона первого квадрата равна 4 см
ответ: 4 см