М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Keks5478568
Keks5478568
11.04.2022 07:40 •  Алгебра

1.   Постройте график функции y=-x2-4x+4   и найдите координаты вершины параболы

👇
Открыть все ответы
Ответ:
dimaburkovskiy3
dimaburkovskiy3
11.04.2022

Попробую объяснить, как решить это задание. Сначала строим функцию y=x².

a) Для того чтобы найти значение функции по значению аргумента, тебе надо на оси абсцисс найти точку с этой абсциссой, затем проведи перепендикуляр из этой точки к графику, он пересечёт график в точке, по оси ординат определи ординату этой точки, это и будет значение функции при данном аргументе.

б) Тут поступай в точности до наоборот. Найди на самом графике  точку с нужной ординатой, затем проведи из этой точки перепендикуляр на ось абсцисс, в том месте, где этот перепендикуляр пересечёт ось oX, определи абсциссу данной точки. Это и будет значение аргумента при данном значении функции.

в)Наименьшее значение на данном отрезке - это 0, так как x² всегда возвращает неотрицательное число.

4,6(65 оценок)
Ответ:
veronicavasilyk
veronicavasilyk
11.04.2022

ответ:Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.

Современной постановкой диофантовых задач мы обязаны французскому математику Ферма. Именно он поставил перед европейскими математиками во о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

xn + yn = zn

не имеет ненулевых рациональных решений для всех натуральных n > 2.

Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.

В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы перебора вариантов;

применение алгоритма Евклида;

представление чисел в виде непрерывных (цепных) дробей;

разложения на множители;

решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;

метод остатков;

метод бесконечного спуска.

Объяснение:

4,4(98 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ