М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
роллы6
роллы6
03.03.2021 18:49 •  Алгебра

Сторона ромба равна 25см, а одна из диагоналей 48см. найдите площадь ромба

👇
Ответ:

Решение оформлено в виде картинки. При решении использовались следующие характеристические свойства ромба: 1.) Все стороны равны. 2.) Диагонали в точке пересечения делятся пополам.


Сторона ромба равна 25см, а одна из диагоналей 48см. найдите площадь ромба
4,5(89 оценок)
Ответ:
LEXUS2705
LEXUS2705
03.03.2021

Так как площадь ромба равна половине произведения его диагоналей,то найдем вторую диагональ:

Так как диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополям,то по теореме пифагора

пусть ОМ-полудиагональ

OM=\sqrt{25^2-(48/2)^2}=\sqrt{25^2-24^2}=\sqrt{625-576}=\sqrt{49}=7см

7*2=14 см-вторая диагональ

Тогда S=48*14/2=336 квадратных сантиметров

ответ:336 см^2

4,5(59 оценок)
Открыть все ответы
Ответ:
BC122
BC122
03.03.2021
1) xy'+y=0
Разрешим наше дифференциальное уравнение относительно производной
y'=- \dfrac{y}{x} - уравнение с разделяющимися переменными
Воспользуемся определением дифференциала
\dfrac{dy}{dx} =- \dfrac{y}{x} \\ \\ \dfrac{dy}{y} =- \dfrac{dx}{x}
Интегрируя обе части уравнения, получаем
\ln|y|=\ln| \frac{1}{x} |+\ln C\\ \\ \ln|y|=\ln| \frac{C}{x}|
y= \dfrac{C}{x}- общее решение

(1-x^2) \frac{dx}{dy} +xy=0\\ \\ (1-x^2) \frac{dx}{dy} =-xy
Разделяем переменные
\dfrac{(x^2-1)dx}{x} = ydy

интегрируя обе части уравнения, получаем

-\ln|x|+ \dfrac{x^2}{2} = \dfrac{y^2}{2} +C - общий интеграл

Решение задачи Коши нет, т.к. при х=0 логарифм ln0 не существует

Пример 3. x^2+y^2-2xy\cdot y'=0
Убедимся, является ли дифференциальное уравнение однородным.
(\lambda x)^2+(\lambda y)^2-2\cdot\lambda x\cdot \lambda y\cdot y'=0 |:\lambda^2\\ \\ x^2+y^2-2xyy'=0

Итак, дифференциальное уравнение является однородным.
Исходное уравнение будет уравнением с разделяющимися переменными если сделаем замену 
y=ux, тогда y'=u'x+u

Подставляем в исходное уравнение

x^2+u^2x^2-2x\cdot ux(u'x+u)=0\\ \\ x^2(1+u^2-2uu'x-2u^2)=0\\ \\ x=0\\ \\ 1-u^2-2uu'x=0\\ \\ u'= \dfrac{1-u^2}{2ux}

Получили уравнение с разделяющимися переменными

Воспользуемся определением дифференциала

\dfrac{du}{dx} =\dfrac{1-u^2}{2ux}

Разделяем переменные

\dfrac{du^2}{1-u^2} = \dfrac{dx}{x}

Интегрируя обе части уравнения, получаем

\ln\bigg| \dfrac{1}{1-u^2} \bigg|=\ln|Cx|

\dfrac{1}{1-u^2} =Cx

Обратная замена

\dfrac{x^2}{x^2-y^2} =Cx - общий интеграл

Пример 4. y''-4y'+4=0
Это дифференциальное уравнение второго порядка с постоянными коэффициентами также однородное.
Воспользуемся методом Эйлера
Пусть y'=e^{kx}, тогда будем иметь характеристическое уравнение следующего вида:
k^2-4k+4=0\\ (k-2)^2=0\\ k_{1,2}=2

Тогда общее решение будет иметь вид:

y=C_1y_1+C_2y_2=C_1e^{2x}+C_2xe^{2x} - общее решение

Пример 5. y''+4y'-5y=0
Аналогично с примером 4)
Пусть y=e^{kx}, тогда получаем
k^2+4k-5=0\\ (k+2)^2-9=0\\ \\ k+2=\pm 3\\ k_1=1\\ k_2=-5

Общее решение: y=C_1e^{x}+C_2e^{-5x}

Найдем производную функции
y'=C_1e^x-5C_2e^{-5x}

Подставим начальные условия

\displaystyle \left \{ {{4=C_1+C_2} \atop {2=C_1-5C_2}} \right. \to \left \{ {{C_1=4-C_2} \atop {2=4-C_2-5C_2}} \right. \to \left \{ {{C_1= \frac{11}{3} } \atop {C_2=\frac{1}{3} }} \right.

y=\frac{11}{3} e^x+\frac{1}{3} e^{-5x} - частное решение
4,4(24 оценок)
Ответ:
Ромашка11441
Ромашка11441
03.03.2021
1. Графический решения системы уравнений  смотри в приложении.

подстановки.
{3x  - y = 7     ⇒   у = 3х  - 7
{2x + 3y = 1
2х  + 3(3х  - 7)  = 1
2х  + 9х  - 21  = 1
11х =  1 + 21
11х = 22
х = 22 : 11
х = 2
у  = 3 * 2  -  7  = 6  -  7
у  = - 1
ответ :  ( 2 ;   - 1) .

сложения.
{3x  -  y  = 7            | * 3
{2x + 3y =  1

{9x  - 3y  =  21
{2x  + 3y  =  1
(9x  - 3y)  + (2x  + 3y) =  21 + 1
(9x + 2x)  + ( - 3y + 3y) = 22
11x  = 22
x  = 22 : 11
х = 2
3 * 2   - у  =  7
6   - у  = 7
-у  = 7 - 6
-у  = 1
у  =  - 1
ответ :  ( 2 ;   - 1) .
/3х-у=7 \2х+3у=1 решить систему графическим, подстановкой и сложением. 20
4,7(38 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ