Напишем формулу для суммы 9 членов геометрической прогрессии
s9=(b1*(q^9-1))/(q-1)
Напишем формулу для суммы 18 членов геометрической прогрессии
s18=(b1*(q^18-1))/(q-1)
512=2^9
s9/(s18-s9)=2^9
GПеревернем дробь
(s18-s9)/s9=1/2^9
Числитель разделим на знаменатель почленно.
1-s18/s9=1/2^9 Отдельно упростим дробь s18/s9
s18/s9=(b1*(q18-1)/(q-1))/(b1*(q9-1)/(q-1)
Сократятся b1 и (q-1)
s18/s9=(q18-1)/(q9-1) разность квадратов
s18/s9=((q:9-1)*(q^9+1))/(q9-1) Сократим на (q^9-1)
s18/s9=q^9+1
Возвращаемся к уравнению
1-s18/s9=1/2^9
1-q^9+1=1/2^9
-q^9=1/2^9
q=-1/2
Щоб знайти проміжки зростання функції у = -х³ + 3х + 1, потрібно визначити, де похідна цієї функції є додатньою.
1. Спочатку знайдемо похідну функції: у' = -3х² + 3.
2. Розв'яжемо рівняння -3х² + 3 > 0, щоб знайти значення х, при яких похідна є додатньою.
-3х² + 3 > 0
-3(х² - 1) > 0
(х - 1)(х + 1) < 0
3. Знайдемо значення х, які задовольняють нерівність (х - 1)(х + 1) < 0:
x - 1 < 0 та x + 1 > 0
x < 1 та x > -1
Таким чином, проміжком зростання функції у = -х³ + 3х + 1 є (-1, 1).
Объяснение:
10+4×8 сам ркшай дальше