В 512 раз
Объем правильного тетраэдра вычисляется по формуле:
где a - величина ребра в принятых единицах измерения
В увеличенном тетраэдре ребро (назовем его b) составляет 8a
подставляя, заменяя и деля увеличенный объем на сравниваемый (с ребром b выраженным через значение a, то есть b = 8a) получаем, что увеличение объема в данном случае будет составлять 8³ = 512 (ед.)
То есть в общем случае:
увеличение/уменьшение объема правильного тетраэдра пропорционально кубу единицы увеличения/уменьшения его ребра
полученные корни наносим на числовую ось
________-4____________2____________
находим знак функции на самом правом интервале
f(3)=-3^2-2*3+8=-9-6+8=-7<0
поэтому на самом правом интервале ставим знак "+"
________-4____________2_____+________
затем расставляем знаки на остальных интервалах помня, что при переходе через корень знак меняется
____+___-4_____-______2_____+_________
вернемся к исходному неравенству. функция должна быть больше или равна нулю. нас удовлетворяют интервалы со знаком "+"
]-∞;-4]∨[2;+∞[