Решим дискриминант и после этого сделаем метод интервала.
x²-3x-4 < 0
Дискриминант:
x²-3x-4 = 0
D = b²-4ac => (-3)²-4*1*(-4) = 9+16 = 25 > 0, 2 корня.
√25 = 5 (можно и в уме)
x =
x₁ =
x₂ =
Корни уравнения: (x+1)(x-4)
На графике будет выглядеть так:
-∞ + - + +∞
00>
-1 4 x
Воспользуемся методом интервала, чтобы понять, в какое направление пойдёт решение:
f (x) = (x+1)(x-4)
f (2) = (2+1)(2-4) = 3*(-2) = -6
ответ: (-∞;-1) ∪ (4;+∞).
1. sin(П-x)-cos(П/2+x)=√3
sinx+sinx=√3 (по формулам привидения)
2sinx=√3
sinx=√3/2
x=(-1)n×π/6+πn,n∈Z
2. 7cos(2x-П/3)=-3.5
cos(2x-π/3)=-1/2
2x-π/3=±2π/3+2πn,n∈Z
2x=±2π/3+π/3+2πn,n∈Z
2x=±π+2πn,n∈Z
x=±π/2πn,n∈Z
3. cos(5x-П/2)=0
5x-π/2=π/2+πn,n∈Z (частный случай)
5x=π/2+π/2+πn,n∈Z
5x=π+πn,n∈Z
x=π/5+πn/5,n∈Z
4. cos(3x-П/2)=1
3x-π/2=2πn,n∈Z
3x=π/2+2πn,n∈Z
x=π/6+2πn/3,n∈Z
5. сos(2-3x)=√2/2
cos(3x-2)=-√2/2
3x-2=±3π/4+2πn
3x=±3π/4+2+2πn
x=±π/4+2/3+2πn/3
6. cos(3П/2+x)= √3/2 (по формулам привидения)
sinx=√3/2,n∈Z
x=(-1)n×π/3+πn,n∈Z
7. sin2xcos2x+0.5=0
sin2xcos2x=-1/2 |×2
2sin2xcos2x=-1
sin4x=-1
4x=-π/2+2πn,n∈Z
x=-π/8+πn/2,n∈Z
8. 2sinxcosx=1/2
sin2x=1/2 (тригонометрические формулы двойных углов)
2x=(-1)n×π/6+2πn
x=(-1)n×π/12+πn/2
9. cosx² - sinx² = -1/2
cos2x=-1/2 (тригонометрические формулы двойных углов)
2x=±2π/3+2πn,n∈Z
x=±π/3+πn,n∈Z