b = AD = AE + EF +FD
Мы знаем, что:
AE = FD;
EF = BC = 7 см.
Получаем:
b = AD = 2 * AE + BC (2)
Найдем длину отрезка AE. Рассмотрим прямоугольный треугольник ABE. Мы знаем, что угол А = 60 градусов следовательно угол B будет равен 30 градусов. Из свойств прямоугольного треугольника мы знаем, что катет лежащий напротив угла в 30 градусов равен половине гипотенузы. То есть в нашем случае:
AE = 1/2 * AB
Из условия мы знаем, что AB = 8 см. Тогда:
AE = 1/2 * AB = 1/2 * 8 = 4 см.
Вернемся к формуле (2):
b = AD = 2 * AE + BC = 2*4 + 7 = 8 + 7 = 15 см
Средняя линия трапеции (1):
m = (a + b) / 2 = (7 + 15) / 2 = 22 / 2 = 11 см
Объяснение:
1) x²-8x+20=0
D=(-8)²-4*20=16-80=-64<0 ⇒ нет действительных корней ⇒ нельзя разложить на множители квадр. трёхчлен
2)х²-1=(х-1)(х+1)
3)х²-8х+15=(х-3)(х-5) , так как
D=(-8)²-4*15=64-60=4>0 ⇒ есть два действ. корня
х₁=(8-2)/2=3 , х₂=(8+2)/2=5
4)х²-9х+20=(х-4)(х-5) , так как
D=(-9)²-4*20=81-80=1>0 ⇒ есть два действ. корня
х₁=4 , х₂=5
Примечание: если D=0, то есть два равных корня х₁=х₂
если D<0, то нет действ. корней, а есть комплексные корни
1) Формула, задающая линейную функцию, имеет вид у = kx + b.
Так как прямая параллельна прямой у = - 2x +7, то угловые коэффициенты прямых равны, k = - 2, формула имеет вид у = - 2х + b.
2) Прямая у = - 2х + b проходит через точку А( - 2; - 4), тогда
- 4 = - 2•(-2) + b
- 4 = 4 + b
- 4 - 4 = b
- 8 = b
Формула примет вид: у = - 2х - 8.
ответ: у = - 8 - 2х.
2) у = (х - 3)² - (х - 2)(х + 4)
у = х² - 6х + 9 - (х² + 4х - 2х - 8) = х² - 6х + 9 - х² - 4х + 2х + 8 = - 8х + 17.
у = - 8х + 17
k = - 8; b = 17.
ответ: k = - 8; b = 17.