√√Пусть длина трассы x м, стартуют они в точке А, а встречаются в В. 1-ое тело имеет скорость v1 (м/мин), 2-ое тело v2 < v1 (м/мин). В момент встречи оба тела вместе проехали весь круг, за время t = x/(v1+v2) (мин) При этом 1-ое тело на 100 м больше, чем 2-ое тело. v1*t = v2*t + 100 v1*x/(v1+v2) = v2*x/(v1+v2) + 100 Умножаем все на (v1+v2) v1*x = v2*x + 100(v1+v2) x(v1-v2) = 100(v1+v2) x = 100(v1+v2)/(v1-v2)
1-ое тело вернулось в точку А через 9 мин, то есть за 9 мин оно расстояние, которое до встречи ое тело за t мин. v1*9 = v2*t = v2*x/(v1+v2) 9v1(v1+v2) = v2*x А 2-ое тело вернулось в А через 16 мин, то есть за 16 мин оно расстояние, которое перед этим ое тело за t мин. v2*16 = v1*t = v1*x/(v1+v2) 16v2(v1+v2) = v1*x
Получили систему из 3 уравнений с 3 неизвестными. { x = 100(v1+v2)/(v1-v2) { 9v1(v1+v2) = v2*x { 16v2(v1+v2) = v1*x Подставляем 1 уравнение во 2 и 3 уравнения { 9v1(v1+v2) = v2*100(v1+v2)/(v1-v2) { 16v2(v1+v2) = v1*100(v1+v2)/(v1-v2) Сокращаем (v1+v2) { 9v1 = 100v2/(v1-v2) { 16v2 = 100v1/(v1-v2) Получаем { 0,09v1 = v2/(v1-v2) { 0,16v2 = v1/(v1-v2)
А) q=12/-3=-4 б) c3=c2*q=12*(-4)=-48 в) c(n)=c1*q^(n-1)=-3*(-4)^(n-1)=3/4*(-4)^n г) c6=3/4*(-4)^6=3*4^5=3*1024=3072 д) Так как для произвольного члена прогрессии c(n) не выполняется ни равенство с(n+1)>c(n), ни равенство c(n+1)<c(n), то прогрессия не является ни возрастающей, ни убывающей. e) Это прогрессия -3, -12, -48,, т.е. прогрессия c c1=-3 и знаменателем q=4 ж) Одна, указанная выше. Другие прогрессиии имеют другой знаменатель q, поэтому даже если у них с1=-3, то другие члены с нечётными номерами не будут совпадать с членами данной прогрессии.
(2х+12)(2х-12)-4х²+12х+13 =13
Объяснение: