Имеется трехчлен х²+18х-3. Нам нужно создать формулу квадрата суммы. Число 18 - это удвоенное второе слагаемое в формуле, значит второе слагаемое равно половине от 18, т.е. 9. Создаем формулу (х+9)² = х²+18х+81. У нас в трехчлене есть первое и второе слагаемые, нужно добавить третье, т.е. 81. Для сохранения величину трехчлена еще вычтем 81.
х²+18х-3 = х²+18х+81 -81-3 = (х+9)²-84. Вот и выделили формулу.
Еще пример. х²-6х+8 = х²-6х+9-9+8 = (х-3)²-1. Более трудные примеры, когда старший коэффициент не равен 1. Его вынеси за скобки.
3х²+12х-15 = 3(х²+4х-5) = 3(х²+4х+4-4-5) = 3((х+2)²-9) = 3(х+2)² -27.
Обозначим знаменатель дроби за (а), тогда числитель дроби равен (а-3) и сама дробь представляет:
(а-3)/а
Если к числителю прибавим 3, то числитель станет равным:
(а-3+3)=а,
а к знаменателю прибавим два знаменатель примет значение:
(а+2)
сама дробь представит в виде:
а/(а+2)
А так как получившаяся дробь увеличится на 7/40 , составим уравнение:
а/(а+2) - (а-3)/а=7/40
Приведём уравнение к общему знаменателю (а+2)*а*40
а*40*а - 40*(а+2)*(а-3)=7*(а+2)*а
40а²- 40*(а²+2а-3а-6)=7*(а²+2а)
40а²-40а²+40а+240=7а²+14а
7а²+14а-40а-240=0
7а²-26а-240=0
а1,2=(26+-D)/2*7
D=√(26²-4*7*-240)=√(676+6720)=√7396=86
а1,2=(26+-86)/14
а1=(26+86)/14=112/14=8
а2=(26-86)/14=-60/14=-4 1/15 - не соответствует условию задачи
Подставим значение а=8 в дробь (а-3)/а
(8-3)/8=5/8
ответ: 5/8