№1
Дана функция
у=6х+19
а) у=? х=0,5 y=6*0.5+19=3+19=22
б) х=?у=1 6x+19=1 6x=-18 x=-3
в) А(-2;7) 6*(-2)+19=-12+19=7 проходит
№2
Построить график функции(только ответы, сам график не нужен)
у=2х-4
б) у=? х=1,5 y=2*1.5-4=3-4=-1
№4
Найти координаты точек пересечения графиков функций
у=47х-37
у=13х+23
47х-37=13х+23 34x=60 x=60/34=30/17 y=13*30/17+23=390/17+23=
№5
Задать формулой линейную функцию, график которой параллелен прямой у=3х-7 и проходит через наяало координат
параллельно прямой значит к=3
проходит через начало координат y=3x
task/29916604/29916224
1. sin2x = sin(x -π/3) ⇔sin2x + sin(π/3 -x) ⇔2sin(x/2 +π/6)*cos(3x/2 -π/6) =0⇔
[ sin(x/2 +π/6) =0 ; cos(3x/2 -π/6) =0 .⇔ [ x/2 +π/6 =πn ; 3x/2 -π/6 =π/2 + πn , n∈ ℤ .⇔
[ x= - π/3 + 2πn ; x =4π/9 + (2π/3)*n , n∈ ℤ .
2. cos(x - π/6) = cos(π/5) ⇔ cos(x - π/6) - cos(π/5) =0 ⇔
-2sin( (x-π/6-π/5)/2 )*sin( (x-π/6+ π/5)/2) =0⇔ sin( (x-11π/30) /2)*sin((x+π/30)/2)=0 ⇔
[ sin( (x-11π/30) /2) =0 ; sin((x+π/30)/2)=0.⇔[ (x-11π/30)/2 =πn ; (x+π/30)/2=πn , n∈ ℤ ⇔
[ x = 11π/30 +2πn ; x = - π/30 +2πn , n∈ ℤ .
3. cos2x = sin(π/3 +x) ⇔ cos2x = cos(π/2 -(π/3 +x) ) ⇔cos2x - cos(π/6 -x) =0 ⇔
-2sin( (3x -π/6) /2) *sin( ( x +π/6) /2) =0⇔ [sin( (3x -π/6) /2) =0 ;sin( ( x +π/6) /2)=0.⇔
[ ( 3x -π/6)/2 =πn ; (x +π/6)/2 =πn, n∈ ℤ⇔
[ x=π/18+(2π/3)*n ; x = - π/3 +2πn ,n∈ ℤ.
* P.S. sinα+sinβ=2sin((α+β)/2)*cos((α- β)/2) ;cosα-cosβ =-2sin((α -β)/2)*sin((α+β)/2) ; sinα =cos(π/2 - α) *