М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Прямая у=5х + 14 является касательной графику функций у=х^3 - 4x^2 + 9x + 14. найти абциссу точки касания.

👇
Ответ:
shoma22
shoma22
17.01.2023

y ' =3x^2-8x+9=5,  3x^2 - 8x + 4 = 0,  x=2; 6

Подставим эти значения в функцию и прямую и найдем у. 

x=2,   y=10+14=24;  y=8-16+18+14=24. Отсюда: абсцисса точки касания х=2.

х=6,  y=30+14=44;  y=108-144+54+14=32. Следовательно, х=6 не является абсциссой точки касания

 

4,6(45 оценок)
Открыть все ответы
Ответ:

как найти точки пересечения графика функции с осями координат?

с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).

чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).

чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).

примеры.

1) найти точки пересечения графика линейной функции y=kx+b с осями координат.

решение:

в точке пересечения графика функции с осью ox y=0:

kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).

в точке пересечения с осью oy x=0:

y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).

например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).

y=2∙0-10=-10. с oy график пересекается в точке (0; -10).

2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.

решение:

в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.

в зависимости от дискриминанта, парабола   пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.

в точке пересечения графика с осью oy x=0.

y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.

например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.

x²-9x+20=0

x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).

y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.

4,5(69 оценок)
Ответ:
Crdsaadfa
Crdsaadfa
17.01.2023
Решение
а) Чтобы логирифм по основанию 5 существовал. Надо чтобы выражение под знаком логарифма было больше 0. ⇒ 3-2x-x^2 >0. Решаем это нер-во, и получаем ответ.
3-2x-x^2>0
x^2+2x-3<0
(x+3)(x-1)<0
по числовой оси, х∈(-3;1)
ответ: x∈(-3;1) - заметьте, не включительно!
б) Условие переписано не верно. Но как я понял, оно такое: 
log((3x+2)/(2x-1)) по основанию х+5.  - если такой пример, то решение такое:
Пишем ОДЗ. Основание должно быть больше 0 и не равно 1. ⇒
x+5>0; x+5≠1, из ОДЗ получаем, что x > -5  и x ≠ -4.
Решаем выражение под знаком логарифма, оно как и в первом примере должно быть больше 0. 
(3x+2)/(2x-1)>0 
x≠(1/2) из неравенства получаем, что x∈(-беск до 1/2)и(от1/2 до + беск.) 
СМОТРИМ на ОДЗ. совмещаем. Получаем, что х∈(-5 до -4) и (от -4 до 1/2) и (от 1/2 до + беск.) 
ответ: x∈(-5;-4)∨(-4;1/2)∨(1/2;+беск)
4,5(64 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ