1)Решение системы уравнений х=1
у=2
3)Решение системы уравнений х=1
у=1
5)Решение системы уравнений х=1
у=2
7)Решение системы уравнений х= -1
у=1
Объяснение:
1)2х+у=4
3х-2у= -1
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
у=4-2х
3х-2(4-2х)= -1
3х-8+4х= -1
7х= -1+8
7х=7
х=1
у=4-2х
у=4-2*1
у=2
Решение системы уравнений х=1
у=2
3)3х+у=4
5х+3у=8
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
у=4-3х
5х+3(4-3х)=8
5х+12-9х=8
-4х=8-12
-4х= -4
х=1
у=4-3х
у=4-3*1
у=1
Решение системы уравнений х=1
у=1
5)3х-у=1
2х+3у=8
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
-у=1-3х
у=3х-1
2х+3(3х-1)=8
2х+9х-3=8
11х=8+3
11х=11
х=1
у=3х-1
у=3*1-1
у=2
Решение системы уравнений х=1
у=2
7)3х+2у= -1
2х-у= -3
Выразим у через х во втором уравнении, подставим выражение в первое уравнение и вычислим х:
-у= -3-2х
у=3+2х
3х+2(3+2х)= -1
3х+6+4х= -1
7х= -1-6
7х= -7
х= -1
у=3+2х
у=3+2*(-1)
у=3-2
у=1
Решение системы уравнений х= -1
у=1
y`(x) = 1 - 4/x^2
Приравняем ее нулю:
1-4/x^2 = 0
4/x^2 = 1
x^2 = 4
x1 = 2, x2 = -2
Нашему промежутку соответствует точка х = 2.
Найдем вторую производную и подставим туда нашу точку, чтобы узнать что это за точка:
y``(x) = 8/x^3
y``(2) = 8/8 = 1
Положительное значение второй производной, следовательно, х = 2 - точка минимума.
Минимум равен y(2) = 2 + 4/2 = 4
На данном промежутке одна экстремальная точка, соответствующая минимума, значит график функции с обоих краев точки уходит вверх, чтобы найти максимальное значение сравним значения краев заданного промежутка:
y(1) = 1 + 4/1 = 5
y(3) = 3 + 4/3 = 4 + 1/3
y(1) = 5 больше, значит это точка максимума для данного промежутка.