1. Область допустимых значений x^2-x-1>0
пусть sqrt(x^2-x-1)=t, t>0
10t-3/t=7
10t^2-7t-3=0
D=169
t1=1
t2=-0,3 не удовл. условию(t>0)
sqrt(x^2-x-1)=1 возводим в квадрат
x^2-x-1=1
x^2-x-2=0
D=9
x1=2
x2=-1
Проверяем ОДЗ х=2 4-2-1=1>0
x=-1 1+1-1=1>0
ответ -1;2
2.принцип такой же
ОДЗ x^2-9x+23>0 данное неравенство справедливо при любом значении х(D<0)
значит и проверку по ОДЗ делать не надо
Пусть sqrt(x^2-9x+23)=t, t>0
2t^2-5t-3=0D=49
t1=3
t2=-0,5 не удовлетворяет(t>0)
sqrt(x^2-9x+23)=3
x^2-9x+23=9
x^2-9x+14=0
D=25
x1=7
x2=2
а)10(корень из x^2-x-1)-3/(дробь)(Корень из x^2-x-1)корень под дробью=7
пусть корень из (х^2-x-1)=а, тогда уравнениє набуває вигляду
10а-3/а=7 домножити ліву і праву частину на а
10а^2-3=7а - перенесемо а в ліву частину, числа в праву
10а^2-7а=3 - зведемо ашики
10а^2-7а-3=0
a=-0.3 - не відповідає умові
а=1 - підставимо корень из (х^2-x-1) вместо а
корень из (х^2-x-1) =1, піднесемо до квадрату ліву і праву частину
х^2-x-1 =1 - перенесемо 1 в ліву частину
х^2-x-2 =0
х=2
х=-1 - за теоремою вієта
б)2(корень из x^2-9x+23)-5=3/(дробь)корень из (x^2-9x+23) корень под дробью
пусть (корень из x^2-9x+23)=а, тогда рівняння набуває вигляду
2а-5=3/а - домножимо все на а
2а^2-5a=3 - перенесемо 3 в ліву частину
2а^2-5a-3=0
а=-1/2
а=3 - за теоремою Вієта
оскільки корінь числа не може бути відємним, то -1/2 не відповідає умові. Єдиною відповіддю є 3. Підставимо корень из x^2-9x+23 вместо а.
корень из x^2-9x+23=3 - піднесемо до квадрата обидві частини рівняння
x^2-9x+23=9 - перенесемо 9 в ліву частину
x^2-9x+14=0
х=7
х=2 - за теоремою вієта.
: в треугольнике 3 вершины. На первое место можно поставить 20 точек, на второе - 19, на третье - 18 => перемножив эти числа мы получим количество возможных треугольников. Но так мы посчитаем повторяющиеся треугольники, посему полученны результат нужно будет разделить на 3!=6
\frac{18 \times 19 \times 20}{6} = 3 \times 19 \times 20 = 1140618×19×20=3×19×20=1140
:
Используем одну из формул комбинаторики. Порядок размещения не учитывается, поэтому мы используем следующую формулу:
C - эс из n по k - k наверху как степень, n как k только снизу
С=n!/k!(n-k)!
n=20, k=3
С = 20!/3!(20-3)! = 20!/3!17! = 1140