М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
bolatbekaliya
bolatbekaliya
04.02.2021 20:20 •  Алгебра

А) Упростите выражение, используя формулы сокращенного умножения: (3x — 4)^2 + (2x — 2) (2х + 4) + 65х
B) Найдите значение выражение, полученное в A), при х = -3
СОЧ ​

👇
Открыть все ответы
Ответ:
barinova6
barinova6
04.02.2021

1) х³ + х² - 6 * х = 0

      х * (х² + х - 6) = 0

      х₁ = 0    х₂ = 2   х₃ = -3

 

2)  (x² - 2x + 3)(x² - 2x + 4) = 6

      пусть  х² - 2*х + 3 = т. уравнение принимает вид

          т * (т + 1) = 6

          т² + т - 6 = 0

            т₁ = -3      т₂ = 2

  1) х² - 2 * х + 3 = 2

          х² - 2 * х + 1 = (х - 1)² = 0

          х = 1

  2)  х² - 2 * х + 3 = -3

            х²- 2 * х + 6 = 0

    корней нет (дискриминант отрицательный)

3)  6*x² + 11*x - 2      = 0              6*x - 1

          уравнение  6*x² + 11*x - 2 = 0  имеет 2 корня:   х₁ = -2    х₂ = 1/6

          второй корень не подходит, так как в этом случае знаменатель равен нулю

4,8(82 оценок)
Ответ:
DOSYMZHAN1
DOSYMZHAN1
04.02.2021

57

Объяснение:

Докажем, что среди написанных чисел есть одинаковые.

Действительно, если все написанные числа разные, то различных

попарных сумм должно быть не менее четырёх, например, суммы

одного числа с четырьмя остальными. Значит, среди попарных сумм

есть суммы двух одинаковых натуральных чисел. Такая сумма

должна быть чётной, в нашем списке это число 80. Отсюда следует,

что на доске есть число 40 и оно написано не меньше двух раз.

Пар равных чисел, отличных от 40, на доске быть не может, иначе

среди попарных сумм было бы ещё одно чётное число. Обозначим одно из трёх оставшихся чисел через х, тогда среди

попарных сумм есть число 40 , + х значит, х равно либо 97 40 57, − =

либо 63 40 23. − =

Наборы 40, 40, 40, 40, 57 и 40, 40, 40, 40, 23 нам не подходят, так как

в них всего две попарные суммы. Значит на доске написан набор 40,

40, 40, 57, 23. Таким образом, наибольшее число на доске — это 57.

4,5(38 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ