М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Vitalyalol
Vitalyalol
25.04.2020 18:56 •  Алгебра

Даю 30б до вечера, не могу решит. Алгебра ​


Даю 30б до вечера, не могу решит. Алгебра ​

👇
Ответ:
jandar200
jandar200
25.04.2020

решение смотри на фотографии


Даю 30б до вечера, не могу решит. Алгебра ​
4,6(82 оценок)
Открыть все ответы
Ответ:
Пакмен007
Пакмен007
25.04.2020

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

4,6(78 оценок)
Ответ:
olhkasianchuk
olhkasianchuk
25.04.2020
X²-2xy-3y²=0
x²-2xy+y²-4y²=0
(x-y)² - (2y)² =0
(x-y-2y)(x-y+2y)=0
(x-3y)(x+y)=0
x-3y=0                x+y=0
x=3y                   x= -y

При x=3y:
(3y)²-3y*y-2*3y-3y=6
9y²-3y²-6y-3y=6
6y²-9y-6=0
2y²-3y-2=0
D=3²-4*2*(-2)=9+16=25
y₁=(3-5)/4=-0.5         x₁=3*(-0.5)=-1.5
y₂=(3+5)/4=2            x₂=3*2=6

При x=-y:
(-y)² - (-y)*y - 2*(-y) -3y=6
y²+y²+2y-3y-6=0
2y²-y-6=0
D=1-4*2*(-6)=1+48=49
y₁=(1-7)/4=-1.5               x₁=-(-1.5)=1.5
y₂=(1+7)/4=2                  x₂=-2

ответ: (-2; 2);  (-1.5; -0.5);  (1.5; -1.5);  (6; 2).
4,8(71 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ