Пусть t(ч) — время, за которое Пончик съедает три плюшки, x(км/ч) — скорость автобуса. В момент времени, когда мимо Пончика проехал автомобиль, автобус находился от него на расстоянии 2xt км, а мотоцикл — на расстоянии 30t км. Cпустя a часов, в тот момент времени, когда мимо Сиропчика проехал мотоцикл, автомобиль находился от него на расстоянии 60t км, а автобус — на расстоянии 2xt км от мотоцикла, следовательно, на расстоянии 2xt – 60t км от автомобиля. Сравнивая расстояния, пройденные автомобилем и мотоциклом получаем уравнение a(60 – 30) = 60t + 30t, откуда , а сравнивая расстояния, пройденные автобусом и автомобилем, получаем уравнение a(60 – x) = (2xt – (2xt – 60t)) = 60t, откуда .
ответ: 40 км/ч.
Пусть одна сторона этих прямоугольников x, а другая y.
У одного прямоугольника периметр P = 2(x + y) = 20
x + y = 10; x = 10 - y.
Приставим прямоугольники друг к другу в цепочку сторонами x.
Получим длинный прямоугольник с сторонами x и 7y
P = 2(x + 7y) = 2(10 - y + 7y) = 2(10 + 6y) = 100
10 + 6y = 50
6y = 40; y = 40/6 = 20/3 = 6 2/3; x = 10 - y = 3 1/3 = 10/3
Прямоугольник со сторонами 10/3 и 20/3 имеет периметр 20,
а 7 таких прямоугольников, выстроенных в цепочку, дают прямоугольник с периметром 100.
2) Сумма 100 = 3*33 + 1 содержит 34 хороших слагаемых.
Это и есть максимум.
3) Бред - треугольник не может быть ромбом.