М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
slavaborisov611
slavaborisov611
27.07.2020 22:28 •  Алгебра

Найти экстремумы функции и интервал разности y = \frac{x {}^{3} }{3} - \frac{x {}^{2} }{2} - 2x + 3

👇
Открыть все ответы
Ответ:
У=х²+6х+13
графиком уравнения является парабола ,так как коэффициент при х² больше 0 , в нашем случае он равен 1, значит ветви параболы направленны вверх ., при решении уравнения х²+6х +13=0,
 D=36-52= - 16<0  дискриминант меньше 0, значит уравнение не имеет действительных корней, т.o парабола не пересекает ось ОХ (график расположен выше оси ОХ ), следовательно  при всех значениях переменной х , значение функции будет принимать только  положительные значения

наименьшее значение  находится на вершине параболы ее координаты
х=-b/2a =-6/(2*1)= -3
y=(-3)²+6*(-3)+13=4 - наименьшее значение функции
4,6(9 оценок)
Ответ:
azarkan
azarkan
27.07.2020
\left\{\begin{array}{l} x^2+y^2=1 \\ y+x^2=p \end{array}
Заметим, что в системе х встречается только во второй степени. Поэтому, если некоторая пара (х; у) - решение системы, то и пара (-х; у) - решение системы. Так как по заданию система должна иметь только одно решение, то необходимо выполнение условия х=-х. Это достигается только при х=0.
Подставляя значение х=0 в систему, получим:
\left\{\begin{array}{l} y^2=1 \\ y=p \end{array} \Rightarrw \left\{\begin{array}{l} y=1; \ y=-1 \\ y=p \end{array}
Проверим, удовлетворяют ли значения р=1 и р=-1 условию.
При р=1:
\left\{\begin{array}{l} x^2+y^2=1 \\ x^2+y=1 \end{array}
y^2-y=0&#10;\\\&#10;y(y-1)=0&#10;\\\&#10;y=0\Rightarrow x^2=1; \ x=\pm1&#10;\\\&#10;y=1\Rightarrow x^2=0; \ x=0
Данный случай не подходит, так как система имеет три решения.
При р=-1:
\left\{\begin{array}{l} x^2+y^2=1 \\ x^2+y=-1 \end{array}
y^2-y=2 \\\ &#10;y^2-y-2=0&#10;\\\&#10;(y+1)(y-2)=0&#10;\\\&#10;y=-1\Rightarrow x^2=0; \ x=0&#10;\\\&#10;y=2\Rightarrow x^2 \neq -3\ \textless \ 0
Данный случай подходит, система действительно имеет одно решение.
Кроме того, можно было построить графики уравнений:
x^2+y^2=1 - окружность с центром в точке (0; 0) и радиусом 1
y=-x^2+p - стандартная парабола ветвями вниз с вершиной в точке
(0; р). Двигая эту параболу вдоль оси ординат, можно убедиться, что единственное пересечение с окружностью происходит лишь при р=-1.
ответ: р=-1
4,5(59 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ