М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
кошка372
кошка372
01.03.2020 09:36 •  Алгебра

Решите функции 1) sin2x=sqrt2 cos(pi/2 + x) 2) 4cos (4x-1)+12sin^2 (4x-1) =11

👇
Ответ:
Sakura171
Sakura171
01.03.2020
1)sin2x=\sqrt2* cos( \frac{\pi}{2} + x)\\
2sinxcosx=\sqrt2*(-sinx)\\
2sinxcosx+\sqrt2*sinx=0\\
2sinx(cosx+ \frac{ \sqrt{2} }{2} )=0\\
cosx+ \frac{ \sqrt{2} }{2}=0\ \ ili \ \ sinx=0\\
cosx=-\frac{ \sqrt{2} }{2}\\
\\
sinx=0\\
x=\pi n, \ \ nEZ\\
\\

cosx=-\frac{ \sqrt{2} }{2}\\
x=б arccos(-\frac{ \sqrt{2} }{2})+2\pi n, \ nEZ\\
x=б (\pi-arccos\frac{ \sqrt{2} }{2})+2\pi n, \ nEZ\\
x=б (\pi-\frac{ \pi}{4})+2\pi n, \ nEZ\\
x=б \frac{ 3\pi}{4}+2\pi n, \ nEZ\\
4,8(35 оценок)
Открыть все ответы
Ответ:
rudaniladanilov
rudaniladanilov
01.03.2020
Обозначим площадь грани кубика за а.
Пусть в ряду имеется х кубиков. Тогда, у крайнего левого и крайнего правого в площади поверхности учитываются 5 сторон, у остальных - 4 стороны. Находим площадь поверхности:
для крайних двух кубиков: 2\cdot5\cdot a=10a
для остальных (х-2) кубиков: (x-2)\cdot4\cdot a=4a(x-2)
общая: 10a+4a(x-2)=10a+4ax-8a=4ax+2a=(4x+2)a
Пусть после добавления кубиков их устало у штук. Общая площадь поверхности в этом случае будет равна (4y+2)a. По условию она увеличилась в k раз. Получаем равенство:
(4x+2)a\cdot k=(4y+2)a \\\ (4x+2)\cdot k=4y+2
Как видно и выражение 4x+2 и выражение 4y+2 при делении на 4 дает остаток 2. Однако при четном k=2n возникает противоречие:
(4x+2)\cdot 2n=4y+2 \\\ 4(2x+1)\cdot n=4y+2
 - левая часть кратна 4, в то время как правая по-прежнему при делении на 4 дает остаток 2. Значит k не может быть четным числом, и значение 6 недопустимо.
ответ: 6
4,4(21 оценок)
Ответ:
panda7777777777
panda7777777777
01.03.2020
Обозначим площадь грани кубика за а.
Пусть в ряду имеется х кубиков. Тогда, у крайнего левого и крайнего правого в площади поверхности учитываются 5 сторон, у остальных - 4 стороны. Находим площадь поверхности:
для крайних двух кубиков: 2\cdot5\cdot a=10a
для остальных (х-2) кубиков: (x-2)\cdot4\cdot a=4a(x-2)
общая: 10a+4a(x-2)=10a+4ax-8a=4ax+2a=(4x+2)a
Пусть после добавления кубиков их устало у штук. Общая площадь поверхности в этом случае будет равна (4y+2)a. По условию она увеличилась в k раз. Получаем равенство:
(4x+2)a\cdot k=(4y+2)a \\\ (4x+2)\cdot k=4y+2
Как видно и выражение 4x+2 и выражение 4y+2 при делении на 4 дает остаток 2. Однако при четном k=2n возникает противоречие:
(4x+2)\cdot 2n=4y+2 \\\ 4(2x+1)\cdot n=4y+2
 - левая часть кратна 4, в то время как правая по-прежнему при делении на 4 дает остаток 2. Значит k не может быть четным числом, и значение 6 недопустимо.
ответ: 6
4,7(16 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ