Сначала найдём ОДЗ(она ограниченна двумя корями(подкоренные больше 0)и одним знаменателем(он ≠0))
4х+1≥0 ⇒ х≥-1/4; 2х+4≥0⇒х+2≥0⇒х≥-2 ну и sqrt(4x+1)-sqrt(2x+4)≠0⇒4x+1≠2x+4⇒х≠1.5
Из этого ОДЗ нам известно, что возможные значения х ∈[-1/4;1.5)∨(1.5;+inf).
Ну и теперь: если знаменатель <0, то дробь отрицательна, т.е.<0 и <1, значит выражение под дробью обязнанно быть больше 0.
Далее мы можем сказать, что оно должно быть меньше или равно 1(т.к. иначе значение дроби меньше 1). Т.е. мы пришли к выражению:0<sqrt(4x+1)-sqrt(2x+4)<1
Первая часть решается элементарно и х>1.5; вторая часть возводится в квадрат и получаем: 4x+1 + 2sqrt(4x+1)*sqrt(2x+4)+2x+4<1(это можно делать спокойно, т.к. уже найденно условие положительности левой части неравенства)
после упрощения: 3х+2≤sqrt(4x+1)*sqrt(2x+4) повторно возведём в квадрат. и решит неполное квадратное уравнение, ответ: 0≤х≤6.
Теперь учтём все ранее найденные ограничения, и: х(∈1.5;6].
Рассмотрим по порядку: 1. Похоже, потерялся знак >, потому что стоит точка. Тогда неравенство верно, ведь если из большего числа отнять меньшее, то получится положительное число, а оно явно больше -21. 2. Неверно, так как чем больше абсолютная величина отрицательного числа, тем это число меньше. Например, пусть a = 10, b = 5 (нам разрешено брать натуральные a и b). Тогда -2*10 < -2*5, потому что -20 < -10 3. Неверно, потому что частное меньше единицы, если числитель меньше знаменателя, а по условию a > b 4. Неверно, ибо a > b
Было x г соли и 60 г воды. Концентрация x/(x+60). Добавили 20 г воды. Стала концентрация x/(x+80). И эта концентрация на 5% = 0,05 = 1/20 меньше. x/(x+60) = x/(x+80) + 1/20 x(x+80)*20 = x(x+60)*20 + (x+60)(x+80) 20x^2 + 1600x = 20x^2 + 1200x + x^2 + 140x + 4800 1600x = x^2 + 1340x + 4800 x^2 - 260x + 4800 = 0 (x - 20)(x - 240) = 0 1) Было x = 20 г соли и 60 г воды, концентрация 20/80 = 1/4 = 25% Стало 20 г соли и 80 г воды, концентрация 20/100 = 20% Концентрация уменьшилась на 5%, все правильно. 2) Было x = 240 г соли и 60 г воды, концентрация 240/300 = 4/5 = 80% Стало 240 г соли и 80 г воды, концентрация 240/320 = 3/4 = 75% Концентрация уменьшилась на 5%, тоже правильно.
Сначала найдём ОДЗ(она ограниченна двумя корями(подкоренные больше 0)и одним знаменателем(он ≠0))
4х+1≥0 ⇒ х≥-1/4; 2х+4≥0⇒х+2≥0⇒х≥-2 ну и sqrt(4x+1)-sqrt(2x+4)≠0⇒4x+1≠2x+4⇒х≠1.5
Из этого ОДЗ нам известно, что возможные значения х ∈[-1/4;1.5)∨(1.5;+inf).
Ну и теперь: если знаменатель <0, то дробь отрицательна, т.е.<0 и <1, значит выражение под дробью обязнанно быть больше 0.
Далее мы можем сказать, что оно должно быть меньше или равно 1(т.к. иначе значение дроби меньше 1). Т.е. мы пришли к выражению:0<sqrt(4x+1)-sqrt(2x+4)<1
Первая часть решается элементарно и х>1.5; вторая часть возводится в квадрат и получаем: 4x+1 + 2sqrt(4x+1)*sqrt(2x+4)+2x+4<1(это можно делать спокойно, т.к. уже найденно условие положительности левой части неравенства)
после упрощения: 3х+2≤sqrt(4x+1)*sqrt(2x+4) повторно возведём в квадрат. и решит неполное квадратное уравнение, ответ: 0≤х≤6.
Теперь учтём все ранее найденные ограничения, и: х(∈1.5;6].
ответ:х∈(1.5;6]