Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
2. 5*4*3 = 60 чисел;
3.
4. 0,04 + 0,1 + 0,2 = 0,34
5. 50/2500 = 0,02 = 2%;
8. Возможных исходов - 6, благоприятных исходов -2. Тогда вероятность равна 2/6 = 1/3;
9.
10. 4*4*3 = 48 чисел;
11.
12. 5/37 = 0,1;
13. В классе 12 + 16 - 25 = 3 ученикв и умные, и красивые. Значит ответ 3/25 = 0,12;
14. 9!/(9-6)! = 9!/3! = 60480;
15.
17. 1/10 = 0,1;
18.
21. х!/((х-1)! * (х - (х-1))!) * (х-1) = х!/(х-1)! * (х-1) = х(х-1) = 30 => х = 6 и х = -5. х = -5 не подходит, так как биноминальные коэффициенты C(n,m) определены при натуральных m,n. Значит х = 6.
22. 17!/(2!*(17-2)!) = 17!/(2!*15!) = 136;
23. Упорядояим ряд: 2,3,3,3,4,4,4,4,5,5.
Медиана равна 4, среднее арифметическое - 3,7.
Модуль разности равен |4 - 3,7| = 0,3;