2sin2x + 3sinxcosx - 3cos2x = 1;
Представим 1 в виде суммы по основному тригонометрическому тождеству:
sin2x + 3cosxsinx - 3cos2x = sin2x + cos2x;
Приведем подобные:
sin2x + 3cosxsinx - 4cos2x = 0;
Разделим каждый член уравнения на cos2x:
tg2x + 3tgx - 4 = 0;
Произведем замену и решим квадратное уравнение:
t2 + 3t - 4 = 0;
D = 9 + 16 = 25;
t = (-3 +- 5)/2;
t1 = -4, t2 = 1;
Сделаем обратную замену:
tgx = 1; x = pi/4 + pin, n из Z;
tgx = -4; x = arctg(-4) pin, n из Z.
ответ: pi/4 + pin, n из Z; arctg(-4) pin, n из Z.
Объяснение:
Оцени!
Дробь не имеет смысла если её знаменатель равен нулю т.к. на ноль делить нельзя.
\dfrac{x}{x-4} ;\; x-4=0;\; \bold{x=4} dfrac{2b^2-9}{b(b-5)} ;\; b(b-5)=0;\; \bold{b=\{0;5\}}.
Дробь равна нулю если числитель равен нулю, а знаменатель - не равен.
\dfrac{x+1}{x} =0;\; \begin{Bmatrix}x+1=0\\x\ne 0\end{matrix} \\\begin{Bmatrix}x=-1\\x\ne 0\end{matrix} \qquad \bold{x=-1}dfrac{x(x-2)^2 }{x-2} =0;\; \begin{Bmatrix}x(x-2)^2 =0\\x-2\ne 0\end{matrix} \\\begin{Bmatrix}x=\{0;2\}\\x\ne 2\end{matrix} \qquad \bold{x=0}.
Объяснение:
удачи получить хорошую отметку
(х - 3) * (х² + 3х + 9) - х * (х + 5) * (х - 5) = 23
х³ - 27 - х * (х² - 25) = 23
х³ - 27 - х³ + 25х = 23
- 27 + 25х = 23
25х = 23 + 27
25х = 50
х = 2
(5 - х)² - х * (2,5 + х) = 0
25 - 10х + х² - 2,5х - х² = 0
25 - 12,5х = 0
- 12,5х = - 25
х = 2