55 (км/час) - скорость первого автомобиля
75 (км/час) - скорость второго автомобиля
Объяснение:
х - скорость первого автомобиля
х+20 - скорость второго автомобиля
206,25/х - время первого автомобиля
206,25/(х+20) - время второго автомобиля
По условию задачи разница во времени 1 час, уравнение:
206,25/х - 206,25/(х+20) = 1
Избавляемся от дробного выражения, общий знаменатель х(х+20), надписываем над числителями дополнительные множители:
206,25(х+20) - 206,25*х=1*х(х+20)
206,25х+4125-206,25х=х²+20х
-х²-20х+4125=0
х²+20х-4125=0, квадратное уравнение, ищем корни:
х₁,₂=(-20±√400+16500)/2
х₁,₂=(-20±√16900)/2
х₁,₂=(-20±130)/2
х₁= -75 отбрасываем, как отрицательный
х₂=110/2=55 (км/час) - скорость первого автомобиля
55+20=75 (км/час) - скорость второго автомобиля
Проверка:
206,25 : 55 = 3,75 (часа) время первого автомобиля
206,25 : 75 = 2,75 (часа) время второго автомобиля
Разница 1 час, всё верно.
2 этап составление математического описания изучаемого объекта - у нас геометрическая фигура четырехугольник , у которого все углы прямые и стороны попарно равны. Площадь прямоугольника ищется произведением его смежных сторон.
3 этап выбор метода решения уравнений математического описания и реализация его в форме моделирующей программы.
Метод использован составления уравнения , зная части сторон прямоугольника 7 частей одна сторона, и 6 частей другая. Пусть х- это 1 часть, тогда 7х и 6х смежные стороны. Уравнение: 7х*6х=168
42х²=168
х²=168/42
х²=4
х=√4
х=2
7*2=14 одна сторона и 6*2=12 вторая сторона