Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.
1. 25/36*x^4+5*x^2+9
2. 1/64*x^2-x^2+16*n^2
3. 4/49*m^2+4*m*n^3+49*n^6
4. 1/36*p^6+n*p^3+9*n^2
5. 9/25*c^3+6*c^3*t^4+25*t^8
6. x^4*y^2-2*x^2*y*k*n^2+k^2*n^4
Объяснение:
Следуя формулам (a+b)^2=a^2+2*a*b+b^2
(a-b)^2=a^2-2*a*b+b^2
1. (5/6x^2+3)^2=(5^2)/(6^2)x^4+2*3*5/6x^2+3^2=25/36 x^4+5x^2+9
2. (1/8x^2-4n)^2=1/64x^4-2*4*1/8 x^2+(4n)^2=1/64*x^2-x^2+16n^2
3. (2/7m+7n^3)^2=4/49 m^2+2*2/7*7 *m*n^3+49n^6= 4/49*m^2+4*m*n^3+49*n^6
4. (1/6 p^3+3n)^2=1/36 p^6+2*1/6*3*p^3*n+9n^2=1/36*p^6+n*p^3+9*n^2
5. (3/5 c^3+5t^4)^2=9/25*c^6+2*5t^4*3/5*c^3+25*t^8= 9/25*c^3+6*c^3*t^4+25*t^8
6. (x^2y-kn^2)^2=x^4*y^2-2*x^2*y*k*n^2+k^2*n^4
Объяснение:
3 час 45 мин=3³/₄ час=15/4 час.
Объём текста равен 90 страниц.
2/3 объёма текста равно: 90*(2/3)=60 (страниц).
Пусть первая переводчица переводила в час х страниц. ⇒
Вторая переводчица переводила в час (х+2) страниц.
ответ: первая переводчица переводила в час 7 страниц,
вторая переводчица переводила в час 9 страниц.