Исследуем поведение функции вблизи точек, где её аналитическое выражение меняется . Найдём левосторонние и правосторонние пределы в точках х=0, х=2 , х=5 .
При х=0 функция имеет разрыв 1 рода .
При х=2 функция непрерывна.
При х=5 функция имеет разрыв 2 рода .
График функции нарисован сплошной линией.
На 1 рисунке нет чертежа функции при х>5 , для которого прямая х=5 является асимптотой , так как он не умещается при данном масштабе. Этот график полностью начерчен отдельно на 2 рисунке, чтобы вы понимали, как он расположен. Но для вашей функции берётся только та часть графика, которая нарисована для х>5 .
Исследуем поведение функции вблизи точек, где её аналитическое выражение меняется . Найдём левосторонние и правосторонние пределы в точках х= -1, х=1 , х=2 .
При х= -1 функция имеет разрыв 1 рода .
При х=1 функция непрерывна.
При х=5 функция имеет разрыв 2 рода .
График функции нарисован сплошными линиями.
На 1 рисунке нет чертежа функции при х>2 , для которого прямая х=2 является асимптотой , так как он не умещается при данном масштабе. Этот график полностью начерчен отдельно на 2 рисунке, чтобы вы понимали, как он расположен. Но для вашей функции берётся только та часть графика, которая нарисована для х>2 сплошной линией..
числа 3; 4; 5; 6.
Объяснение:
1) х - первое число,
х+1 - второе число,
х+2 - третье число,
х+3 - четвертое число.
2) х² - квадрат первого числа,
(х+1) ² = х² +2х+1 - квадрат второго числа;
(х+2)² = х²+4х+4 - квадрат третьего числа;
(х+3)² = х²+6х+9 - квадрат четвертого числа.
3) (х² +2х+1) - х² = 2х+1 - разность квадратов второго и первого числа;
(х²+6х+9) - (х²+4х+4) = 2х + 5 - разность квадратов четвертого и третьего числа;
4) Составляем уравнение и находим х:
(2х+1) + (2х + 5) = 18
4х + 6 = 18
4х = 12
х = 12 : 4 = 3 - первое число.
3+1 = 4 - второе число;
3+2= 5 - третье число;
3+3=6 - четвертое число.
ПРОВЕРКА
3² =9
4² =16
5²=25
6²=36
16-9 = 7
36-25=11
7+11 = 18 - что соответствует условию задачи.
ответ: числа 3; 4; 5; 6.