У Маши был листок бумаги она сложила его пополам что его две части точно совпали потому что снова сложила пополам Она получилась фигура как на рисунке справа SAVE ME
Все задания сводятся к решению квадратных неравенств. Если у неравенства коэф-т при x^2<0, то можно умножить обе части на (-1). Общий вид квадратного трехчлена ax^2+bx+c. Для решения неравенства ax^2+bx+c>=(<)0 можно применять графический Решая квадратное уравнение находим точки пересечения параболы с осью OX. Если a>0, то ветви направлены вверх x1 и x2 - корни уравнения, причем x1<x2 ax^2+bx+c>0, если x∈(-∞;x1)∨(x2;+∞) ax^2+bx+c<0, если x∈(x1;x2) 1.3x^2-2x-4=0⇒x=(1+(-)√1+3*4)/3⇒x1=(1-√13)/3; x2=(1+√13)/3; x1>x2 3x^2-2x-4>0, если x∈(-∞;(1-√13)/3)∨((1+√13)/3;+∞) Оценим значения корней 3<√13<4⇒4<1+√13<5⇒4/3<(1+√13)/3<5/3⇒ 4; 6 и 2006 принадлежат интервалу ((1+√13)/3;+∞) -4<-√13<-3⇒-3<1-√13<-2⇒-1<(1-√13)/3<-2/3⇒ -3; -2 принадлежат интервалу ((-∞;1-√13)/3) Решениями неравенства не являются 0 и 1 2. (a^2-16)/(2a^2-3a+3)>0⇒(a^2-16)*(2a^2-3a+3)>0 и 2a^2-3a+3≠0 Найдем ОДЗ: 2a^2-3a+3=0; D=b^2-4ac=3^2-2*3*4=9-24<0⇒ 2a^2-3a+3>0 для всех a. Значит и (a^2-16)>0⇒(a-4)(a+4)>0 a1=-4; a2=4 - корни уравнения (a-4)(a+4)=0⇒ a∈(-∞;4)∨(4;+∞) 3. y=√2x/(6-x) ОДЗ: 2x/(6-x)>=0⇒x*(6-x)>=0 и (6-x)≠0; x≠6 x1=0; x2=6 - корни уравнения x*(6-x)=0 ⇒ x∈(-∞;0]∨(6;+∞) 4. .I3x2-4x-4I=4+4x-3x2⇒I3x^2-4x-4I=-(3x^2-4x-4)⇒по определению модуля Нужно решить неравенство 3x^2-4x-4<0 3x^2-4x-4=0⇒x=(2+(-)√4+4*3)/3⇒x1=(2-4)/3=-2/3; x2=(2+4)/3=2⇒ x∈(-2/3;2) Во всех этих случаях хорошо сделать эскиз параболы, Для этого на оси x отметить корни уравнения и знать направление ветвей. Неравенство >0 для тех значений x, где ветви параболы выше оси x. Неравенство<0 для тех значений x, где ветви параболы ниже оси x.
1)выражение под корнем должно быть больше или равно нулю(x - 3)(8 - 2x) ≥ 0(x - 3)(x - 4) = 0⇒ x ∈ [3;4]2) (14x + 7)(4 - 10x) ≥ 0⇒ x ∈ [-1/2;2/10] 3) (0.1x + 1)(6 - 2x) ≥ 0(x + 10)(3 - x) ≤ 0⇒ x ∈ [-10;3]4) (8 - 16x)(x - 9)x ≥ 0 (x - 0.5)(x - 9)x ≤ 0⇒ x ∈ (-∞;0]∪[1/2;9] (∪ - знак объединения)5) выражение под корнем в знаменателе должно быть больше или равно нулю, а также сам знаменатель не должен быть равен нулю(x - 4)(x - 1)(x - 3)x > 0 ⇒ x ∈ (-∞;0) ∨ (1;3) ∨ (4;+∞)6) (x + 1)(x - 5)(x + 3)x > 0 ⇒ x ∈ (-∞;-3)∪(-1;0)∪(5;+∞)Если естественная область определения - это те значения переменной, при которых выражение имеет смысл.
ответ: б(только Q)
Объяснение:
Квадрат на пополам сверни, получиться треугольник)