1. Что такое система двух линейных уравнений с двумя переменными?Два уравнения, в которых одноименные неизвестные обозначают одну и ту же величину, называются системой уравнений с двумя переменными.
2. Что значит решить систему графически ?
Решить систему графически значит построить график каждого уравнения, входящего в данную систему, в одной координатной плоскости и найти точки пересечения этих графиков. Координаты этой точки (x; y) и будут являться решением данной системы уравнений.
3. В чем суть метода подстановки при решении системы уравнений с двумя переменными?
Выразить одну переменную через другую из любого уравнения системы. Подставить полученное выражение в другое уравнение системы и решить как одно уравнение с одной неизвестной переменной.
4. В чем суть метода алгебраического сложения при решении системы уравнений с двумя переменными?
Исключить сложением одну из переменных, сложить друг с другом левые части уравнений системы, приравняв к ним сумму правых частей тех же уравнений.
Вот накалякал. Разбирайся :)
xy/(x+y) = 5
xz/(x+z) = 7
yz/(y+z) = 9
xy = 5x + 5y
xz = 7x + 7z
yz = 9y + 9z
x(y-5) = 5y
x = 5y/(y-5)
5yz/(y-5) = 35y/(y-5) + 7z
5yz = 35y + 7z * (y-5)
5yz = 35y + 7yz - 35z
2yz + 35y = 35z
y(2z + 35) = 35z
y = 35z/(2z + 35) = z/(2z/35 + 1)
35z^2/(2z + 35) = 315z/(2z + 35) + 9z
35z^2 = 315z + 9z*(2z + 35)
35z^2 = 315z + 18z^2 + 315z
17z^2 = 630z
z=630/17
y = 35*630/(2*630/17 + 35)/17 = 35*630/(1260 + 595) = 22050/1855 = 630 / 53
x = 5*630/(630/53 - 5)/53 = 5*630/((630/53 - 5)*53) = 5*630/365 = 630/73
c=37
отсюда сумма катетов равна a+b=84-37=47
Далее используя теорему Пифагора
и формулу квадрата двучлена и формулу разности квадратов находим, что площадь данного треугольника равна