В таких задачах уместно пользоваться следующим правилом: каждой точке на числовой окружности соответствует бесконечно много значений, которые отличаются друг от друга на 2пк, где к - целое число. Это значит, что sin (t + 2пк) = sin t. Аналогично cos (t + 2пк) = cos t. Используем это в задаче: 200п/3 = 66п + 2п/3= 33•2п + 2п/3. Здесь параметр к равен 33, то есть мы 33 раза полную окружность и пришли в точку 2п/3. Делаем вывод: числу 200п/3 соответсвует число 2п/3. Найдём синус и косинус 2п/3: sin 2п/3 = √3 / 2. cos 2п/3 = -1/2
Пусть х - цифра десятков;
у - цифра единиц .
По условию цифра десятков, увеличенная на 2, в 2 раза больше цифры единиц.
Исходя из этого, получаем первое уравнение:
х +2 = 2у
Ещё в условии сказано, что если цифры десятков и единиц поменять местами, то полученное число будет меньше первоначального на 27, т.е.
(10х+у) > (10у+х) на 27
Получаем второе уравнение:
(10х+у ) - (10у+х) = 27
Упростим это уравнение:
9х - 9у = 27
х - у = 3
Решаем систему:
{x + 2 = 2y
{x - y = 3
Из второго уравнения выразим х:
х = у + 3
Подставим в первое:
у + 3 + 2 = 2у
у = 5 - цифра единиц
х = 5 + 3
х = 8 - цифра десятков;
ответ: 85