1. У ящику 12 білих, 7 чорних та одна зелена кулька. З нього навмання беруть одну кульку. Яка ймовірність того, що вона буде: 1) білою; 2) чорною; 3) зеленою? 2. З класу, у якому навчається 28 учнів, 16 брали участь у спартакіаді. Яка ймовірність того, що навмання вибраний учень цього класу брав участь у спартакіаді?
3. З натуральних чисел від 1 до 28 навмання вибирають одне. Яка ймовірність того, що воно не є дільником числа 28?
4. З натуральних чисел від 1 до 20 навмання вибирають одне. Яка ймовірність того, що воно не є дільником числа 20?
5. Під час виборів президента в країні X було проведене вибіркове опитування виборців «Exit poll». За результатами опитування 10000 виборців виявилося, що 900 виборців віддали свій голос претендентові C. Яка імовірність того, що претендент С виграє вибори?
6. Конференція продовжується три дні. У перший і другий день виступають по 15 доповідачів, у третій – 20. Яка імовірність того, що доповідь професора Буракова випаде на третій день?
x= - 11 точка локального минимума функции
Объяснение:
Дана функция
1) Вычислим производную от функции:
2) Находим критические точки:
3) Определим промежутки возрастания и убывания функции. Для этого представим производную от функции в следующем виде и применим метод интервалов:
Точки -11 и -9 делят ось Ох на 3 интервала: (-∞; -11), (-11; -9) и (-9; +∞).
а) Пусть x= -12∈(-∞; -11):
Значит, на интервале (-∞; -11) функция убывает.
б) Пусть x= -10∈(-11; -9):
Значит, на интервале (-11; -9) функция возрастает.
в) Пусть x= 0∈(-9; +∞):
Значит, на интервале (-9; +∞) функция убывает.
4) Определим экстремумы функции:
Функция убывает на интервале (-∞; -11) и возрастает на интервале (-11; -9), то x= - 11 точка локального минимума функции.
Функция возрастает на интервале (-11; -9) и убывает на интервале (-9; +∞), то x= - 9 точка локального максимума функции.