Точки с координатами (-2;8) и (1;5)
Объяснение:
Первая функция
у= х²+4 (1)
Выразим у во второй функции:
х+у = 6 <=> у = 6-х (2)
Точка пересечения - точка, с некими координатами (х0;у0), которые принадлежат обоим графикам функций.
То есть нам надо найти такие х и у, для которых верно равенство 1 и 2.
Приравняем у в (1) и (2) функциях. Получим:
у = х²+4 = 6-х
Или
Найдем у для х=(-2) и х=1
Для этого подставим значение х в любую из 2х функций
При х = (-2)
у(-2) = 6-(-2) = 6+2 = 8
Следовательно одна из искомых точек имеет координаты:
(-2;8)
При х=1
у(1) = 6-1 = 5
Следовательно вьорая искомая точек имеет координаты:
(1;5)
ответ: (-2;8) и (1;5)
ответ:
объяснение:
вопрос 1. как называется число, которое показывает, какая у числа степень? (показатель степени).
вопрос 2. вторая степень числа? (квадрат)
вопрос 3. третья степень числа? (куб)
вопрос 4. расстояние от земли до луны равняется 150 000 000 млн км . как называется короткая запись 1,5 * 10^8 км? (стандартный вид числа).
вопрос 5. сколько будет два в квадрате? (четыре).
вопрос 6. при умножении чисел показатели (складываются).
вопрос 7. при делении чисел показатели (вычитаются).
вопрос 8. при возведении в какую степень любое число станет единицей? (в нулевую).
вопрос 9. сколько будет 1000 в степени ноль? (один)
вопрос 10. сколько будет 10 в минус первой? (0,1)
на этом моя фантазия закончилась.
2) c-d>0/5*(c/d)
3) (p-q)2<p2-q2
4) (m+n)2>m3+n3
5) (k-l)3<2(k+l)2
6) c3-d3>0/5(c2+d2)
7) n*(n-1)*(n-2)<n2+(n-1)2+(n-2)2
8) k*(k+1)*(k+2)*(k+3)>3(k+k+1+k+2+k+3)
Цифры после букв это степени :) Вроде бы так :)