М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
fsks
fsks
07.10.2020 22:33 •  Алгебра

Решите уравнение: x+(5x+2) в квадрате=25 (1+x в квадрате)

👇
Ответ:
k03a12345
k03a12345
07.10.2020
X+ 25x^{2} +20x- 25x^{2} =25-4
21x=21
x=1
4,4(66 оценок)
Ответ:
steel09090
steel09090
07.10.2020
x+(5x+2)^2=25(1+x^2)\\
x+25x^2+20x+4=25+25x^2\\
x+25x^2+20x+4-25-25x^2=0\\
21x-21=0\\
21x=21\\
x=1
4,5(72 оценок)
Открыть все ответы
Ответ:
лолкек67
лолкек67
07.10.2020
Пусть расстояние от В до точки встречи S км/ч. 
Скорость первого велосипедиста Х км/ч, скорость второго Х-5 км/ч. 
Тогда первый за 1 час 20 минут (4/3 часа) проехал расстояние (18+S) км: 

(18+S) / x = 4/3 
отсюда Х = 3 * (18+S) / 4 

За это же время (4/3 часа) второй велосипедист проехал Расстояние 18-S км: 

(18-S) / (х-5) = 4/3 

(18+S) / x = (18-S) / (х-5) 
(18+S) (x-5) = (18-S) x 
18x - 90 + Sx - 5S = 18x - Sx 
2Sx - 5S - 90 = 0 
подставляем x,выраженное через S (Х = 3 * (18+S) / 4) 
2S * 3 (18+S) / 4 - 5S - 90 = 0 
1.5 S (18+S) - 5S - 90 = 0 
1.5 S^2 + 27S - 5S - 90 = 0 
1.5S^2 + 22S - 90 = 0 
D = 22^2 + 4*1.5 * 90 = 484 + 540 = 1024 = 32^2 
S1 = (-22 - 32)/3 <0 
S2 = (-22+32)/3 = 10/3 = 3 1/3 
ответ: на расстоянии 3_1/3 км. 

Проверка: 
первый за 4/3 часа проехал 18+10/3 = 64/3 км. 
Его скорость 64/3 / (4/3) = 16 км/ч. 
Скорость второго 16-5=11 км/ч. 
За 4/3 часа он проехал 11 * (4/3) = 44/3 км (считая от пункта А). 
18 - 44/3 = 10/3 км от пункта В
4,7(78 оценок)
Ответ:
BrainSto
BrainSto
07.10.2020
Так, так, так. У линейной функции возрастание/убывание зависит от углового коэффицента k y=kx+m : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором y=4- \frac{1}{3}x; k=- \frac{1}{3}. С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения x_1; x_2, два произвольных числа, но x_1\ \textless \ x_2 . Пусть мы имеем функцию y=f(x), тогда вычисляем значения функции в этих двух точках, имеем f(x_1) и f(x_2), так вот, если x_1\ \textless \ x_2; f(x_1)\ \textless \ f(x_2);, тогда функция возрастающая, если же x_1\ \textless \ x_2; f(x_1)\ \textgreater \ f(x_2), то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1)y=x^3+1; x_1=-2; f(x_1)=(-2)^3+1=-7; x_2=4;x_1\ \textless \ x_2 \\ f(x_2)=4^3+1=65; f(x_1)\ \textless \ f(x_2), т.е. функция возрастающая. А вот задание с y= \frac{x^2}{2} не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной) y= \frac{x^2}{2}; y'= \frac{2x}{2}=x;. Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка): x_1=1; x_2=2; x_1\ \textless \ x_2; f(x_1)= \frac{1}{2};f(x_2)=2; f(x_1)\ \textless \ f(x_2), функция возрастает, что и требовалось доказать.
4,7(58 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ