по примеру реши.
x^3 - 6x^2 + 11x - 6 = 0 можно, конечно, решить формулой кардано для решения кубических уравнений, но это долго и трудно. проще подобрать корни схемой горнера. возможные рациональные корни x = a/b, где а - делитель свободного члена, b - делитель старшего коэффициента. x = 1, -1, 2, -2, 3, -3, 6, -6 находишь значения в этих точках. y(1) = 1 - 6 + 11 - 6 = 0 - повезло сразу! теперь раскладываем: x^3 - x^2 - 5x^2 + 5x + 6x - 6 = 0 (x - 1)(x^2 - 5x + 6) = 0 (x - 1)(x - 2)(x - 3) = 0 ответ: x1 = 1, x2 = 2, x3 = 3
√(x-1)
x-1>0
x>1
D(y)=(1; +∞) - область определения функции
2) √(x-1) +√(x+3)=2
x-1≥0
x≥1
x+3≥0
x≥ -3
ОДЗ: х≥1
(√(x-1))² = (2-√(x+3))²
x-1=4-4√(x+3) +x+3
4√(x+3) = x-x+7+1
4√(x+3)=8
(√(x+3))² = 2²
x+3=4
x=1 ≥1
ответ: 1
3) √(2x²+5x+11) ≥3
2x²+5x+11≥9
2x²+5x+11-9≥0
2x²+5x+2≥0
f(x)=2x²+5x+2 - парабола, ветви вверх
2x²+5x+2=0
D= 25-4*2*2=9
x₁= -5-3 = -2
4
x₂ =-5+3 = -0.5
4
+ - +
-2 -0.5
x∈(-∞; -2]U[-0.5; +∞)