Объяснение:
1) Коэффициент при старшей степени (x^2) положительный, соответственно, ветви параболы направлены вверх
2) Чтобы уравнение имело 2 различных корня, дискриминант должен быть больше 0 (если дискриминант равен 0, то ответом являются 2 одинаковых корня; если дискриминант меньше 0, то корней на множестве действительных чисел нет)
D=b^2-4ac=(a-5)^2-4*1*9=a^2-10a+25-36=a^2-10a-11
a^2-10a-11>0
Найдем нули:
a^2-10a-11=0
a1=-1
a2=11
3) Выражение можно разложить на множители по формуле a(x-x1)(x-x2)
1*(a+1)(a-11)
(a+1)(a-11)>0
Расставим на числовой оси эти точки (выколотые) и знаки, получим ответ
a∈(-∝;-1)U(11;+∝)
ответ: a∈(-∝;-1)U(11;+∝)
ΔАВС , ∠С=90° , ∠В=50° ⇒ ∠А=90°-∠В=90°-50°=40°
СН ⊥ АВ ⇒ ∠СНА=90° и ∠СРВ=90° .
Рассм. ΔВСН . Он прямоугольный и ∠В=50° , тогда ∠ВСН=90°-50°=40°. Это угол, образованный высотой СН с меньшим катетом (катет ВС лежит против меньшего острого угла ΔАВС).
Рассм. ΔАСН . Он прямоугольный и ∠А=40° , тогда ∠АСН=90°-40°=50°. Это угол, образованный высотой СН с бОльшим катетом АС (катет АС лежит против бОльшего острого угла ΔАВС).
Замечание. Так как у треугольников ΔАВС , ΔВСН и ΔАСН все три угла равны, то эти треугольники подобны .