
— прямая пропорциональность.
— прямая пропорциональность, то есть доказать, что в выражении 
находится в первой степени (не
, не
, не
и не
, а просто
).
. Если внимательно посмотреть это выражение можно видоизменить по формулам сокращенного умножения, а именно по формуле «разность квадратов». Действительно, данное выражение имеет вид
, где
, и
. Формула «разность квадратов» раскрывается так:
.
.
,
находится в первой степени, а значит зависимость
— есть прямая пропорциональность. Доказано.
√(22/3) √ (17/2) √ (8/3) √(19/5)
например вот так
возведем их в квадрат
(22/3) (17/2) (8/3) (19/5)
приводим к наименьшему общему знаменателю (30)
220/30 255/30 80/30 57/30
и располагаем в порядке возрастания
57/30 80/30 220/30 255/30 ⇒255/30 =17/2 ⇒√(17/2 ) -наибольшее.
или так...
возведем их в квадрат и выделим целую часть
(22/3)=7+1/3 (17/2)=8+1/2 (8/3)=2+2/3 (19/5)=3+4/5 ⇒
(17/2)=8+1/2 - наибольшее среди (22/3), (17/2), (8/3), (19/5),
⇒√ (17/2) - наибольшее среди √(22/3), √ (17/2), √(8/3) , √(19/5).