Согласно определению периодической функции, функция f (x) является периодической, а число Т ≠ 0 ее периодом, если для любых значений переменной х выполняется равенство f(x) = f(x + Т).
1) f(x) = sin x/4,T = 8π.
Используя тот факт, что функция sin x является периодической с периодом 2π, получаем:
sin ((x + 8π)/4) = sin (x/4 + 8π/4) = sin (x/4 + 2π) = sin (x/4).
Следовательно, функция f(x)=sin x/4 является периодической с периодом 8π.
2) f (x) = 3cos2x, T = π.
Используя тот факт, что функция cos x является периодической с периодом 2π, получаем:
3cos(2 * (x + π)) = 3cos(2 * x + 2 * π) = 3cos(2 * x) = 3cos2х.
Следовательно, функция f (x) = 3cos2x является периодической с периодом π.
3) f(x) = tg3x, T= π/3.
Используя тот факт, что функция tg x является периодической с периодом π, получаем:
tg(3 * (x + π/3)) = tg(3 * x + 3π/3) = tg(3x + π) = tg3x.
Следовательно, функция f (x) = tg3x является периодической с периодом π/3.
4) f(x) = ctg x/4, T = 4π.
Используя тот факт, что функция сtg x является периодической с периодом π, получаем:
сtg((х + 4π)/4) = ctg(x/4+ 4π/4) = ctg(x/4 + π) = ctgx/4.
Следовательно, функция f (x) = ctg x/4 является периодической с периодом 4π.
:3
1.
(-2;3)
1)4·(-2)+3·3=1
-8+9=1
1=1
(-2;3) подходит
2) (-2)²+5=3³ (три в третьей степени)
4+5=9
(-2;3) подходит
3)-2·3=6
-6≠6
(-2;3) не походит
2.
(0;1)
1)0²+5·1-6=0
5-6=0
-1≠0
(0;1) не подходит
2)0·1=0=0
0=0=0
(0;1) подходит
(5;-4)
1)5²+5·(-4)-6=0
25+(-20)-6=0
5-6=0
-1≠0
(5;-4) не подходит
2)5·(-4)=(-4)=0
-20≠(-4)≠0
(5;-4) не подходит
(0;1,2)
1)0²+5·1,2-6=0
0+6-6=0
0=0
(0;1,2) подходит
2)0·1,2=0=0
0=0=0
(0;1,2) подходит
(-1;1)
1)(-1)²+5·1-6=0
1+5-6=0
0=0
(-1;1) подходит
2)-1·1=-1=0
-1=-1≠0
(-1;1) не подходит
(1;-1)
1)1²+5·(-1)-6=0
1+(-5)-6=0
-4-6=0
-10≠0
(1;-1) не подходит
2)1·(-1)=1=0
-1≠1≠0
(1:-1) не подходит
ответ: (0;1,2) подходит для решения обоих уравнений, для решения 1 уравнения подходят пары чисел (0;1,2) и (-1;1), для решения 2 уравнения подходят пары чисел (0;1) и (0;1,2).
3.
2x²-y+1=0
А(-3;-17)
1) 2·(-3)²-(-17)+1=0
18+17+1=0
36≠0
точка А не принадлежит
В(2;9)
2·2²-9+1=0
8-9+1=0
0=0
точка В принадлежит графику
С(-2;9)
2·(-2)²-9+1=0
2·4-9+1=0
8-9+1=0
0=0
точка С принадлежит графику
D(-1;4)
2·(-1)²-4+1=0
2-4+1=0
-2+1=0
-1≠0
точка D не принадлежит графику
4.
xy-12=0
А(3;-4)
3·(-4)-12=0
-12-12=0
-24≠0 ⇒ график не проходит через точку А
В(-2;6)
-2·6-12=0
-12-12=0
-24≠0 ⇒ график не проходит через точку В
С(7;2)
7·2-12=0
14-12=0
2≠0 ⇒ график не проходит через точку С
Насчёт 4го я не уверена
Писала 15 минут)