Объяснение:
1)Найдите значение функции y= - 2x+4, если значение аргумента равно -6
х= -6
у= -2*(-6)+4=12+4=16
При х= -6 у=16
2) Укажите, для какого значения аргумента значение функции y=4x - 5 равно -4.
у= -4
-4=4х-5
-4х= -5+4
-4х= -1
х= -1/-4
х=0,25
3) Укажите координаты точки пересечения графика функции
у= -0,5х - 5 с осью абсцисс.
График пересекает ось Ох при у=0
у=0
0= -5х-5
5х= -5
х= -1
Координаты точки пересечения графиком оси Ох (-1; 0)
4) Задайте формулой линейную функцию, если известно к = -4 и прямая проходит через точку А(1;5).
y = -4х +9
5= -4*1+9
5=5
5) Графиком какой из данных функций является прямая, проходящая параллельно Ох:
у =1/9
6. Не выполняя построений ,найдите координаты точки пересечения графиков линейных функций у= - 2х-10 и у = 3х-5.
- 2х-10 = 3х-5
-2х-3х= -5+10
-5х=5
х= -1
у=3*(-1)-5
у= -3-5
у= -8
Координаты точки пересечения графиков (-1; -8)
2. подставим вместо ф(х) нужное значние и решим уравнение.
8=х^2-6x+8=>x^2-6x=0=>x(x-6)=0=>x=0 и х=6то есть функця равна 8 при х=0 и х=6.
-1=х^2-6x+8=>х^2-6x+9=0=>D=36-36=0=>x=3функция равна -1 при х=3
-2=х^2-6x+8=>х^2-6x+10=>D=36-4*10*1=36-40<0Функция не имеет значений х при которых ее значений равно -2.
3.Рассматривая наибольшее и наименьшее значение функции удобнее выбрать интервал от 0, до 6. С графика видим что наименьшее значение при х=3 при котором значение функции=-1, а наибольшее это х=6 при котором значение функции=8
4.область значений фугнкции ує[- бесконечность;+ бесконечность}
5.для определения промежутокв возрастания и убывания найдем производную функции и приравняем ее к нолю., производная функции равна 2х-6. Теперь приравняем ее к нолю и найдем корни., 2х-6=0, откуда 2х=6, х=3. теперь смотрим как ведет себя функции на промежутках -беск до 3 и от трех до +беск. Функция убывает на промежутке хе[-беск; 3], а возрастает х е [3; + бесконечность]
6. положительные значчения на промежуткке от -бесконечности до 2 и от 4 до плюс бесконечности, а отрицательные знаения функция принимает на промежутке от 2 до 4
Графикфункции: представлен в загруженном рисунке