Можно выделить полные квадраты: (9a^2+6ab+b^2)+(b^2+18b+81)+ (a^2-6a+9)+1926=(3a+b)^2 +(b+9)^2 +(a-3)^2+1926 Заметим ,что если возможно,что все 3 квадрата могут быть равны 0. То минимум ,когда все квадраты равны нулю. Тк в этом случае все квадраты будут принимать свое минимальное значение. Ведь квадрат неотрицателен. Проверим: b+9=0 ,b=-9 ,a-3=0 , a=3. Подставим в 1 квадрат: 3a+b=3*3-9=0 . Тут нам несказанно повезло,ведь на практике подобный случай довольно редок! Таким образом наименьшее значение будет при a=3, b=-9. Это наименьшее значение равно 1926 соответственно. В более общем случае эта задача решается через экстремум 2 переменных,что не является школьной программой.
X(t) = t² - 3t, tо = 4 Среднюю скорость движения на указанном отрезке времени; Решение: Средняя скорость движения определим по формуле
Δx=X(4)-X(0)=4²-3*4-0=16-12=4 Δt=4
Скорость и ускорение в момент времени tо=4 Скорость точки в момент времени t определяется через производную перемещения
V(t) = X'(t) =(t²-3t)'=(t²)'-(3t)'=2t-3 V(4)=2*4-3=5 Ускорение точки в момент времени t определяется через производную скорости а(t) =V'(t)=(2t-3)=2
Моменты остановки Решение: В момент остановки скорость равна нулю V(t) = 0 2t - 3 = 0 2t = 3 t = 1,5
продолжает ли точка после момента остановки двигаться в том же направлении или начинает двигаться в противоположном направлении;
В противоположном направлении так как знак скорости изменился на противоположный.
Наибольшую скорость движения на указанном отрезке времени.
Решение: Скорость движения на концах отрезка времени V(0) = 2*0 - 3 = -3 V(4) = 2*4 - 3 = 8 - 3 = 5 Найдем производную(ускорение) функции скорости от времени V'(t) = (2t - 3) = 2 Постоянная величина производной (ускорения) говорит о том что движение равноускоренное и максимум и минимум скорости находится на концах отрезка. Поэтому максимальноя скорость на отрезке находится в момент времени t = 4 и равна Vmax = V(4) = 5
Відповідь:
Пояснення:
4y^2×(y+x+1)