Пусть швея шила х сумок в день, тогда по плану она должна была успеть за 80 / х дней. Но она шила на (х + 4) в день и за срок (80 / х - 4) дней есть осталось сшить ещё 2 сумки. Составим и решим уравнение. Итак: 80 - (x + 4) * (80 / x - 4) = 2. Раскрыв скобки, приведя подобные члены и умножив уравнение на х, получим квадратное уравнение: 4 * x² + 14 * x - 320 = 0. Его корни: x1,2 = -7 / 4 ± √5316 / 8. По условию подходит только положительный корень, поэтому x = -7 / 4 + √5316 / 8. ответ: швея по плану должна была шить (-7 / 4 + √5316 / 8) сумки в день.
Вектор, перпендикулярный плоскости 2x + 3y - 4z + 2 = 0 имеет координаты (2; 3; -4). Он обязательно будет лежать в плоскости, перпендикулярной данной, уравнение которой нам нужно составить. Отложим этот вектор, например, от точки A (-3; 2; 1), т. е. проведём вектор АС, который лежит в искомой плоскости. Получим точку С (-1; 5; -3), которая тоже лежит в искомой плоскости. Зная координаты трёх точек A (-3; 2; 1), В (4; -1; 2) и С (-1; 5; -3), лежащих в одной плоскости, найдём уравнение этой плоскости. Для этого составляем определитель: | x-(-3) 4-(-3) -1-(-3) | | y-2 -1-2 5-2 | = 0 | z-1 2-1 -3-1 |
Но она шила на (х + 4) в день и за срок (80 / х - 4) дней есть осталось сшить ещё 2 сумки.
Составим и решим уравнение.
Итак:
80 - (x + 4) * (80 / x - 4) = 2.
Раскрыв скобки, приведя подобные члены и умножив уравнение на х, получим квадратное уравнение:
4 * x² + 14 * x - 320 = 0.
Его корни:
x1,2 = -7 / 4 ± √5316 / 8.
По условию подходит только положительный корень, поэтому x = -7 / 4 + √5316 / 8.
ответ: швея по плану должна была шить (-7 / 4 + √5316 / 8) сумки в день.