Объяснение:
Воспользуемся свойством суммы логарифмов.
1) lg x + lg (x - 1) = lg 2 равносильно lg (x * (x - 1)) = lg (2).
Отсюда x² - x = 2, но при этом x - 1 > 0, чтобы выражение под знаком логарифма имело смысл.
Уравнение равносильно x² - x - 2 = 0.
D = 1² - 4 * (-2) = 1 + 8 = 9.
x = (1 + √9) / 2 = (1 + 3) / 2 = 4 / 2 = 2,
или x = (1 - √9) / 2 = (1 - 3) / 2 = -2 / 2 = -1, не удовлетворяет x - 1 > 0.
То есть уравнение имеет один корень x = 2.
ответ: x = 2.
2) lg (5 - x) + lg x = lg 4 равносильно lg ((5 - x) * x) = lg 4.
Отсюда: (5 - x) * x = 4, при этом x > 0 и 5 - x > 0.
x² - 5x + 4 = 0.
D = 5² - 4 * 4 = 25 - 16 = 9.
x = (5 + √9) / 2 = (5 + 3) / 2 = 8 / 2 = 4,
или x = (5 - √9) / 2 = (5 - 3) / 2 = 2 / 2 = 1.
Оба корня удовлетворяют x > 0 и 5 - x > 0.
ответ: x1 = 4; x2 = 1.
х4+1+2х2-15=0
х4+2х2-14=0
х2=t
t2+2t-14=0
D=4+4*14=4+56=60
t1=(-2-корень из 60)/2=(-2-корень из 15*4)/2=(-2-2*корень из 15)/2= -2(1+корень из 15)/2=-(1+корень из 15)=-1-корень из 15.
t2=(-2+корень из 60)/2=все тоже самое, что и в t1= -2(1-корень из 15)/2=-(1-корень из 15)=корень из 15-1.
Теперь подставляем t в х2. Получаем:
х2=-1-корень из 15 или х2=корень из 15-1
вот. я подставила. а дальше тут нужно немного преобразовать. я не знаю как, извини))
2). а с этим примером я вам точно
(2х)2+2=0
4х2+2=0
4х2=-2
х2=-2:4
х2=-1/2
тут вроде решений нету, т.к. корня из отрицательного числа не существует.
Ну как-то так. вроде)