1) f'(x)=6x^2-6x-12;
f'(x)=0 <=> 6x^2-6x-12=0 |:6
x^2-x-2=0
x1=2 - не входит в промежуток в условии
x2=-1
f(-2)=-16-12+24+24=20
f(1)=2-3+12+24=35
f(-1)=-2-3+12+24=31;
ответ: minf(x)=f(-2)=20; maxf(x)=f(1)=35;
2) f'(x) = -sin2x*2+sinx*2
f'(x)=0 <=> 2sinx-2sin2x=0 |:2
sinx-sin2x=0; sinx-2sinxcosx=0; sinx(1-2cosx)=0; sinx=0 или cosx=-1/2;
x=pi * n, n принадлежит Z или x=+-2pi/3+2pi*k, k принадлежит Z;
f(-pi/3)=cos(-2pi/3) - 2cos(pi/3)=-1/2-2*1/2=-1/2-1=-3/2
f(pi)=cosx(2pi) - 2cos(pi)=1+2=3;
f(2pi/3)=cos(4pi/3)-2(2pi/3)=-1/2+2*1/2=-1/2+1=1/2;
ответ: minf(x)=f(-pi/3)=-3/2; maxf(x)=f(pi)=3;
время в пути пешехода (t), время в пути велосипедиста (t-2)
путь до места встречи (S1), вторая часть пути (S2)
S = S1 + S2
скорости велосипедиста и пешехода (vv) и (vp)
S1 = vv * (4/3)
S2 = vp * (4/3)
S = (4/3) * (vv + vp)
S = t * vp
S = (t-2) * vv
система
(4/3) * (vv + vp) = t * vp
t * vp = (t-2) * vv
4*vv = 3 * t * vp - 4*vp
4 * t * vp / (t-2) = (3*t - 4) * vp
4*t = (3*t - 4) * (t-2)
4*t = 3*t*t - 10*t + 8
3*t*t - 14*t + 8 = 0 D = 14*14 - 4*3*8 = 4*(49-24) = 10*10
t(1;2) = (14 +-10) / 6 = (7 +- 5) / 3
t = 4
t = 2/3 часа -- 40 минут - это меньше, чем 1 час 20 минут))) не является решением
ответ: 4 часа шел пешеход, 2 часа ехал велосипедист.