Упростите выражение: 7(x+8)+(x+8)(x-8)=7x+56+x²-64=x²+7x-8 Разложите на множители: а) ab³-ba³=ab(b²-a²)=ab(b-a)(b+a) б) a⁴b²-b⁴a²=a²b²(a²-b²)=a²b²(a-b)(a+b) Представьте в виде произведения: а) 3x-3y+x²y-xy²=3(x-y)+xy(x-y)=(x-y)(3+xy) б) a³-8=(a-2)(a²+2a+4) в) x²y+xy²-2x-2y=xy(x+y)-2(x+y)=(x+y)(xy-2) г) a³+27=(a+3)(a²-3a+9) Докажите, что при любых значениях x и y значение выражения неотрицательно: а) 4x²-20xy+25y²=(2x)²-2*2x*5y+(5y)²=(2x-5y)² квадрат любого числа есть число положительное б) 9x²+24xy+16y²=(3x)²+2*3x*4y+(4y)²=(3x+4y)²
1. Умножим все части двойного неравенства 1,7<√3<1,8 на √4=2: 1,7*2<√3*√4<1,8*2 3,4<√12<3,6 2. Перемножим данные двойные неравенства : 1,7*2,6<√3*√7<1,8*2,7 4,42<√21<4,86 Умножим последнее неравенство на (-1). Т. к. умножаем на отрицательное число, то знаки неравенства меняются на противоположные: -4,42>-√21>-4,86 или в более привычной форме -4,86<-√21<-4,42 3. Сложим неравенства 3,4<√12<3,6 неравенство -4,86<-√21<4,42: 3,4-4,86<√12-√21<3,6-4,42 -1,26<√12-√21<-1,02.
7(x+8)+(x+8)(x-8)=7x+56+x²-64=x²+7x-8
Разложите на множители:
а) ab³-ba³=ab(b²-a²)=ab(b-a)(b+a)
б) a⁴b²-b⁴a²=a²b²(a²-b²)=a²b²(a-b)(a+b)
Представьте в виде произведения:
а) 3x-3y+x²y-xy²=3(x-y)+xy(x-y)=(x-y)(3+xy)
б) a³-8=(a-2)(a²+2a+4)
в) x²y+xy²-2x-2y=xy(x+y)-2(x+y)=(x+y)(xy-2)
г) a³+27=(a+3)(a²-3a+9)
Докажите, что при любых значениях x и y значение выражения неотрицательно:
а) 4x²-20xy+25y²=(2x)²-2*2x*5y+(5y)²=(2x-5y)² квадрат любого числа есть число положительное
б) 9x²+24xy+16y²=(3x)²+2*3x*4y+(4y)²=(3x+4y)²