y = f(x)
Сначала осознаем как должен выглядеть график (рис. 1):
Рисуем прямые x = -5 и x = 6, график не должен выходить за эти прямые (обозначили область определения).Рисуем прямые y = -4 и y = 3, график не должен выходить за эти прямые (обозначили множество значений).На оси Ox отмечаем интервал (1;4), график функции должен проходить через ось Ox в этом интервале (обозначили промежуток нулевого значения).Теперь построим график функции (рис. 2):
Для простоты построим график ломанной (она непрерывна и просто изображается).
Функция убывает на всей области определения, поэтому для самого меньшего х из области определения , должно быть самое наибольшее y из множества значений (потом это значение уже не реализуется т.к. функция убывает, тогда множество значений будет другим). Итог: вершина ломанной в точке (-5;3).Пусть следующая вершина в точке (0;2).Ноль функции, он же пусть будет и вершиной ломанной, в точке (3;0) т.к. 3 ∈ (1;4).Последняя вершина в точке (6;-4), y= -4 для нужного множества значений.
См. Объяснение.
Объяснение:
Чтобы найти значение выражение при заданном значении х, надо в это выражение вместо х подставить его значение.
Дано выражение:
2х + 8/(х+1).
1) если х = - 1/2, то данное выражение равно:
2 · (-1/2) + 8/(-1/2 +1) = -1 + 8/(1/2) = - 1 + 16 = 15;
2) если х = 0,5, то данное выражение равно:
2 · 0,5 + 8/(0,5+1) = 1 + 8/1,5 = 1 + 8/(3/2) = 1 + 16/3 = 1 + 5 1/3 = 6 1/3 ≈ 6,33;
3) если х = 1, то данное выражение равно:
2 · 1 + 8/(1+1) = 2 + 8/2 = 2 + 4 = 6;
4) если х = 3, то данное выражение равно:
2 · 3 + 8/(3+1) = 6 + 8/4 = 6 + 2 = 8.