1) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 1)^2*(x + 2) = 0 (x - 1)^2 = 0 x - 1 = 0 x = 1
x + 2 = 0 x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 1)(x - 3) = 0 x^2 = 1 x₁ = 1 x₂= - 1;
x - 3 = 0 x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 4)^2*(x - 3) = 0 x - 4 = 0 x = 4
x - 3 = 0 x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 4)(x + 1) = 0
ответ: 0,5; -0,2.
Объяснение:
1+3x-10x²=0;
-10x²+3x+1=0; [*(-1)]
10x²-3x-1=0;
a=10; b=-3; c=-1;
D=b²-4ac = (-3)²-4*10*(-1) = 9+40=49>0- 2 корня.
x1,2=(-b±√D)/2a=(-(-3)±√49)/2*10=(3±7)/20;
x1=0,5; x2=-0,2.