М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
раф15рус
раф15рус
20.01.2022 05:55 •  Алгебра

Вычислить объемы тел: а) по поперечному сечению. + Чертеж.
!


Вычислить объемы тел: а) по поперечному сечению. + Чертеж. !

👇
Ответ:
Sunlight11
Sunlight11
20.01.2022

x^2+y^2+\dfrac{z^2}{25}=1\ \ ,\ \ \ S_{ellipsa}=\pi ab\\\\\\x^2+y^2=1-\dfrac{z^2}{25}\ \ ,\ \ \ x^2+y^2=\dfrac{25-z^2}{25}\ \ ,\ \ \ \dfrac{x^2}{\dfrac{25-z^2}{25}}+\dfrac{y^2}{\dfrac{25-z^2}{25}}=1\\\\\\a=b=\sqrt{\dfrac{25-z^2}{25}}\ \ ,\ \ \ \ V=\int\limits^{z_2}_{z_1}\, S(z)\, dz=\int\limits^{z_2}_{z_1}\, \pi \cdot a(z)\cdot b(z)=\int\limits^{z_2}_{z_1}\, \pi a^2(z)\, dz

V=\int\limits^{z_2}_{z_1}\, \pi a^2(z)\, dz=\int\limits^5_{-5}\pi \cdot \dfrac{25-z^2}{25}\, dz=\dfrac{\pi }{25}\int\limits^5_{-5}\, (25-z^2)\, dz=\dfrac{\pi }{25}\cdot \Big(25z-\dfrac{z^3}{3}\Big)\Big|_{-5}^5=

=\dfrac{\pi }{25}\cdot \Big(125-\dfrac{125}{3}\Big)-\dfrac{\pi}{25}\cdot \Big(-125+\dfrac{125}{3}\Big)=\dfrac{2\pi }{25}\cdot \Big(125-\dfrac{125}{3}\Big)=\dfrac{2\pi }{25}\cdot \dfrac{250}{3}=\\\\\\=\dfrac{20\pi }{3}

4,7(67 оценок)
Открыть все ответы
Ответ:
Nady2106
Nady2106
20.01.2022

3.  а). 2xy-6y^2=2y*(x-3y);  б).a^3-4a=a*(a^2-4)=a*(a-2)*(a+2). 4. ВС -x см , АВ- (x+2) см, АС-2x см. уравнение: x+x+2+2x=50; x+x+2x=50-2; 4x=48; x=48/4=12(см)-ВС, 12+2=14(см)-АВ, 12*2=24(см)-АС. ответ: ВС-12 см, АВ-14 см, АС-24 см. 5. a^2-c^2-2ab+b^2-(a^2-ab-ac-ab+b^2+bc+ac-bc-c^2)=a^2-c^2-2ab+b^2-a^2+ab+ac+ab-b^2-bc-ac+bc+c^2=0. равенство доказано(все сокращается).  6.x= -y. подставляем в формулу: y=5*(-y)-8; y= -5y-8; y+5y= -8; 6y= -8, y=(-8)/6= -4/3, следовательно x=4/3. ответ: точка А (4/3: -4/3).

4,6(88 оценок)
Ответ:
Eliseevka12
Eliseevka12
20.01.2022

Этот метод мы применяли в 7-м классе для решения систем линейных уравнений. Тот алгоритм, который был выработан в 7-м классе, вполне пригоден для решения систем любых двух уравнений (не обязательно линейных) с двумя переменными х и у (разумеется, переменные могут быть обозначены и другими буквами, что не имеет значения). Фактически этим алгоритмом мы воспользовались в предыдущем параграфе, когда задача о двузначном числе привела к математической модели, представляющей собой систему уравнений. Эту систему уравнений мы решили выше методом подстановки (см. пример 1 из § 4).

Алгоритм использования метода подстановки при решении системы двух уравнений с двумя переменными х, у.

1. Выразить у через х из одного уравнения системы.

2. Подставить полученное выражение вместо у в другое уравнение системы.

3. Решить полученное уравнение относительно х.

4. Подставить поочередно каждый из найденных на третьем шаге корней уравнения вместо х в выражение у через х, полученное на первом шаге.

5. Записать ответ в виде пар значений (х; у), которые были найдены соответственно на третьем и четвертом шаге.

Переменные х и у, разумеется, равноправны, поэтому с таким же успехом мы можем на первом шаге алгоритма выразить не у через х, а х через у из одного уравнения. Обычно выбирают то уравнение, которое представляется более простым, и выражают ту переменную из него, для которой эта процедура представляется более простой.

Пример 1. Решить систему уравнений

Система уравнений

Решение.

1) Выразим х через у из первого уравнения системы: х = 5 - 3у.

2)Подставим полученное выражение вместо х во второе уравнение системы: (5 - 3у) у — 2.

3)Решим полученное уравнение:

Система уравнений

4) Подставим поочередно каждое из найденных значений у в формулу х = 5 - Зу. Если Al63.jpg то Уравнение

5)    Пары (2; 1) и Al65.jpg решения заданной системы уравнений.

ответ: (2; 1); Al65.jpg

Метод алгебраического сложения

Этот метод, как и метод подстановки, знаком вам из курса алгебры 7-го класса, где он применялся для решения систем линейных уравнений. Суть метода напомним на следующем примере.

Пример 2. Решить систему уравнений

Система уравнений

Решение.

Умножим все члены первого уравнения системы на 3, а второе уравнение оставим без изменения: Система уравнений

Вычтем второе уравнение системы из ее первого уравнения:

Система уравнений

В результате алгебраического сложения двух уравнений исходной системы получилось уравнение, более простое, чем первое и второе уравнения заданной системы. Этим более простым уравнением мы имеем право заменить любое уравнение заданной системы, например второе. Тогда заданная система уравнений заменится более простой системой:

Система уравнений

Эту систему можно решить методом подстановки. Из второго уравнения находим Уравнение Подставив это выражение вместо у в первое уравнение системы, получим

Система уравнений

Осталось подставить найденные значения х в формулу Формула

Если х = 2, то

Решение

Таким образом, мы нашли два решения системы: Решение

ответ:  ответ

Метод введения новых переменных

С методом введения новой переменной при решении рациональных уравнений с одной переменной вы познакомились в курсе алгебры 8-го класса. Суть этого метода при решении систем уравнений та же самая, но с технической точки зрения имеются некоторые особенности, которые мы и обсудим в следующих примерах.

Пример 3. Решить систему уравнений

Система уравнений

Решение. Введем новую переменную Al617.jpg Тогда первое уравнение системы можно будет переписать в более простом виде: Уравнение Решим это уравнение относительно переменной t:

4,4(63 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ