М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

нужно решение. 1. Вынесите общий множитель за скобки: а) 5а2 b – 15b2; б) 18а4 + 6а2.

2. Решите уравнение: 30 + 5(3х – 1) = 35х – 25.

3. Упростите выражение: 2а(а - b + с) + 2b(а – b – с) – 2с(а + b – с).

👇
Ответ:
ирина1834
ирина1834
11.05.2023

1. а) 5a*2b - 15b*2 = 10b * (a - 3)

  б) 18a*4 + 6a*2 = 12a * (6 + 1) = 12a * 7

2. 30 + 5(3x - 1) = 35x - 25

   30 + 15x - 5 = 35x - 25

   20x = 50

   x = 2,5

3. 2а(а - b + с) + 2b(а – b – с) – 2с(а + b – с) = 2a² - 2ab + 2ac + 2ab - 2b² - 2bc - 2ac + 2bc + 2c² = 2a² - 2b² + 2c²

4,6(9 оценок)
Открыть все ответы
Ответ:
Марк2992
Марк2992
11.05.2023
Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К.
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет: 1*1*1*2!*2!*3! = 24
Тогда вероятность (согласно классическому определению): \frac{24}{10!} = \frac{1}{151200}

Попробуем другой, более простой
Перестановки с повторением.
Всего у нас \frac{(1 + 1 + 1 + 2 + 2 + 3)!}{3!*2!*2!} = \frac{10!}{3!*2!*2!}
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
\frac{1}{\frac{10!}{3!*2!*2!}} = \frac{3!*2!*2!}{10!} = \frac{24}{10!} = \frac{1}{151200}
4,6(93 оценок)
Ответ:
steep6
steep6
11.05.2023
Многое в поставленной вами задачи зависит от того Какие значения может 
принимать Х изменяясь в своей области определения . Кроме того важно 
сразу отметить что если вы ищете аналитическую закономерность (виде 
некоторой формулы) то её может и не быть. 

Если множество значений Х дискретно то можно использовать 
любой из стандартных методов интерполяции : линейную, дробно- 
линейную, многочлен Тейлора , Чебышева, Ньютана , Лагранжа и т.д 

Приведу пример нахождения интерполяционного многочлена Тейлора 
по следующим данным : при Х1=0 Y1=1 ,при X2=1 Y2=2 , при X3=2 Y3=1; 
многочлен ищем ввиде: P(x)=A0+A1*X+A2*X^2 , где коэффициенты A0,A1,A2- 
подлежат определению, подставляя последовательно вместо X значения Х1,Х2,Х3 
а вместо P(x) значения Y1,Y2,Y3- соответственно получим следующию систему уравнений: 
P(X1)=A0+A1*0+A2*0*0=A0=1 итак A0=1; 
P(X2)=1+A1*1+A2*1*1=2 
P(X3)=1+A1*2+A2*2*2=1+2*A1+4*A2=1 находим A1 и A2 из последних двух строк 
Получим A1=-1 ,A2=2 итак искомый многочлен представляется P(x)=1 – X +2*X^2 
Данный многочлен даёт представление о ВОЗМОЖНОЙ аналитической зависимости 
между X и Y. Естественно этот результат не единственен. 
Вообще же рекомендую прочитать книжку: Л.И. Турчак П.В. Плотников «Основы численных методов» 
4,8(24 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ