Здесь достаточно только условия, что вторников больше, чем понедельников, т.к. такое возможно только если месяц начинается со вторника. Действительно, если месяц начинается не со вторника и заканчивается, допустим, в понедельник, то в нем есть несколько пар соседних пн.-вт. и плюс один последний понедельник, которому в этом месяце нет соседнего за ним вторника, т.е. понедельников в этом месяце на один больше, что противоречит условию. Если месяц начинается не со вторника и заканчивается не в понедельник, то все пн.-вт. в месяце идут парами и их равное количество. Таким образом, условию удовлетворяет единственный случай, когда месяц начинается со вторника (т.е. разорвана первая пара пн.-вт.) и заканчивается месяц не в понедельник (чтобы оставшиеся пары соседних пн.-вт. целиком содержались в этом месяце). Тогда вторников будет как раз на один больше. Итак, месяц начался во вторник, значит вторники это - 1, 8, 15... числа месяца, т.е. 13-ое число - воскресенье.
1(б) x^2 -6x-7=0
D1=(-3)^2-1*(-7)=16 => корень из D1=4
x1=3+4=7 x2=3-4=-1
x^2-9x+14=0
D=(-9)^2-4*1*14=25 => корень из D=5
x1=9+5/2=7 x2=9-5/2=2
Записываем дробь с полученными корнями.
(x-7)(x+1)/(x-7)(x-2)=x+1/x-2
2(б) 3x^2-16x+5=0
D1=(-8)^2-3*5=49 => корень из D1=7
x1=8+7/3=5 x2=8-7/3=1/3
Нижнюю часть сократим на x, но будем помнить, что за этим x скрывается ещё один корень - 0.
x^2-4x-5=0
D1=(-2)^2-1*(-5)=9 => корень из D1=3
x1=2+3=5 x2=2-3=-1 x3=0
Подставляем.
(x-5)(x-1/3)/(x-5)(x+1)x=x-1/3/x(x+1)