Пусть y = uv, тогда y' = u'v + uv':
Решим левый интеграл:
cosx = \frac{1-t^2}{1+t^2} => dx = \frac{2}{1+t^2}dt\\ \int \frac{2(1+t^2)}{(1+t^2)(1-t^2)} dt = \int \frac{2}{(1-t)(1+t)}dt = \int ( \frac{1}{1-t} + \frac{1}{1+t})dt = ln(1-t)+ln( 1+t) = ln|1-t^2| = ln|1-tg^2\frac{x}{2}| \\" class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=%5Cint%20%5Cfrac%7Bdx%7D%7Bcosx%7D%3B%5C%5C%20tg%5Cfrac%7Bx%7D%7B2%7D%3Dt%20%3D%3E%20cosx%20%3D%20%5Cfrac%7B1-t%5E2%7D%7B1%2Bt%5E2%7D%20%3D%3E%20dx%20%3D%20%5Cfrac%7B2%7D%7B1%2Bt%5E2%7Ddt%5C%5C%20%20%5Cint%20%5Cfrac%7B2%281%2Bt%5E2%29%7D%7B%281%2Bt%5E2%29%281-t%5E2%29%7D%20dt%20%3D%20%5Cint%20%5Cfrac%7B2%7D%7B%281-t%29%281%2Bt%29%7Ddt%20%3D%20%5Cint%20%28%20%5Cfrac%7B1%7D%7B1-t%7D%20%2B%20%5Cfrac%7B1%7D%7B1%2Bt%7D%29dt%20%3D%20ln%281-t%29%2Bln%28%201%2Bt%29%20%3D%20ln%7C1-t%5E2%7C%20%3D%20ln%7C1-tg%5E2%5Cfrac%7Bx%7D%7B2%7D%7C%20%20%5C%5C" title="\int \frac{dx}{cosx};\\ tg\frac{x}{2}=t => cosx = \frac{1-t^2}{1+t^2} => dx = \frac{2}{1+t^2}dt\\ \int \frac{2(1+t^2)}{(1+t^2)(1-t^2)} dt = \int \frac{2}{(1-t)(1+t)}dt = \int ( \frac{1}{1-t} + \frac{1}{1+t})dt = ln(1-t)+ln( 1+t) = ln|1-t^2| = ln|1-tg^2\frac{x}{2}| \\">
Возвращаемся к исходному:
29 км/час скорость лодки в стоячей воде
Лодка по течению до встречи 67,2 (км)
Лодка против течения до встречи 54,6 (км)
Объяснение:
Задача2.
х = скорость лодки в стоячей воде.
х + 3 - скорость лодки по течению.
х - 3 - скорость лодки против течения.
Общая скорость лодок до встречи: 121,8 (общее расстояние) : 2,1 (общее время) = 58 (км/час).
(х + 3) + (х - 3) = 58
2х = 58
х = 29 (скорость лодки в стоячей воде).
Лодка по течению до встречи: (29 + 3) * 2,1 = 67,2 (км)
Лодка против течения до встречи: (29 - 3) * 2,1 = 54,6 (км)
Проверка: 67,2+54,6=121,8 (км), всё верно.
Уравнение
3у/8-14 = -13+y/8 Избавляемся от дробного выражения, общий знаменатель 8:
3у-8*14= 8 8(-13)+у
3у-112= -104+у
3у-у= -104+112
2у=8
у=4