1)10 (км/час) - скорость на велосипеде.
2)8 (см) - длина основания;
10 (см) - длина боковой стороны.
Объяснение:
1. Турист преодолел расстояние в 29 км. 2 часа он ехал на велосипеде,
затем 3 часа шёл пешком. Скорость на велосипеде больше скорости
пешком на 7 км. Найти скорость движения на велосипеде.
х - скорость пешком
х+7 - скорость на велосипеде
3*х - путь пешком
(х+7)*2 - путь на велосипеде
По условию задачи весь путь 29 км, уравнение:
3х+2(х+7)=29
3х+2х+14=29
5х=29-14
5х=15
х=15/5
х=3 (км/час) - скорость пешком
3+7=10 (км/час) - скорость на велосипеде.
2 Периметр равнобедренного треугольника 28 см. Боковая сторона
на 2 см больше основания . Найти стороны РАВНОБЕДРЕННОГО
треугольника.
х - длина основания
х+2 - длина боковой стороны
Периметр треугольника - это сумма длин всех сторон треугольника. Так как треугольник равнобедренный, в нём боковые стороны равны.
По условию задачи периметр треугольника 28 см, уравнение:
х+2(х+2)=28
х+2х+4=28
3х=28-4
3х=24
х=24/3
х=8 (см) - длина основания
8+2=10 (см) - длина боковой стороны.
В решении.
Объяснение:
Моторная лодка против течения реки 308 км и вернулась в пункт отправления , затратив на обратный путь на 3 часа меньше , чем на путь против течения.
Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 3 км/ч .
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость лодки в неподвижной воде.
х + 3 - скорость лодки по течению.
х - 3 - скорость лодки против течения.
308/(х + 3) - время лодки по течению.
308/(х - 3) - время лодки против течения.
Разница во времени 3 часа, уравнение:
308/(х - 3) - 308/(х + 3) = 3
Умножить все части уравнения на (х - 3)(х + 3), чтобы избавиться от дробного выражения:
308*(х + 3) - 308*(х - 3) = 3(х - 3)(х + 3)
308х + 924 - 308х + 924 = 3х² - 27
1848 = 3х² - 27
-3х² = -27 - 1848
-3х² = -1875
х² = -1875/-3
х² = 625
х = √625
х = 25 (км/час) - скорость лодки в неподвижной воде.
Проверка:
308 : 22 = 14 (часов);
308 : 28 = 11 (часов);
14 - 11 = 3 (часа), верно.